@misc{BindernagelKainmuellerRammetal.2012, author = {Bindernagel, Matthias and Kainm{\"u}ller, Dagmar and Ramm, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Analysis of inter-individual anatomical shape variations of joint structures}, series = {Proc. Int. Society of Computer Assisted Orthopaedic Surgery (CAOS)}, journal = {Proc. Int. Society of Computer Assisted Orthopaedic Surgery (CAOS)}, number = {210}, year = {2012}, language = {en} } @misc{Bindernagel, type = {Master Thesis}, author = {Bindernagel, Matthias}, title = {Articulated Statistical Shape Models}, language = {en} } @inproceedings{BindernagelKainmuellerSeimetal.2011, author = {Bindernagel, Matthias and Kainm{\"u}ller, Dagmar and Seim, Heiko and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {An Articulated Statistical Shape Model of the Human Knee}, series = {Bildverarbeitung f{\"u}r die Medizin 2011}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2011}, publisher = {Springer}, doi = {10.1007/978-3-642-19335-4_14}, pages = {59 -- 63}, year = {2011}, language = {en} } @inproceedings{SeimKainmuellerLameckeretal.2010, author = {Seim, Heiko and Kainm{\"u}ller, Dagmar and Lamecker, Hans and Bindernagel, Matthias and Malinowski, Jana and Zachow, Stefan}, title = {Model-based Auto-Segmentation of Knee Bones and Cartilage in MRI Data}, series = {Proc. MICCAI Workshop Medical Image Analysis for the Clinic}, booktitle = {Proc. MICCAI Workshop Medical Image Analysis for the Clinic}, editor = {v. Ginneken, B.}, pages = {215 -- 223}, year = {2010}, language = {en} } @article{HettichSchierjottSchillingetal., author = {Hettich, G. and Schierjott, R. A. and Schilling, C. and Maas, A. and Ramm, Heiko and Bindernagel, Matthias and Lamecker, Hans and Grupp, T. M.}, title = {Validation of a Statistical Shape Model for Acetabular Bone Defect Analysis}, series = {ISTA 2018 London Abstract Book}, journal = {ISTA 2018 London Abstract Book}, abstract = {Acetabular bone defects are still challenging to quantify. Numerous classification schemes have been proposed to categorize the diverse kinds of defects. However, these classification schemes are mainly descriptive and hence it remains difficult to apply them in pre-clinical testing, implant development and pre-operative planning. By reconstructing the native situation of a defect pelvis using a Statistical Shape Model (SSM), a more quantitative analysis of the bone defects could be performed. The aim of this study is to develop such a SSM and to validate its accuracy using relevant clinical scenarios and parameters.}, language = {en} } @article{BrueningHildebrandtHepptetal., author = {Br{\"u}ning, Jan and Hildebrandt, Thomas and Heppt, Werner and Schmidt, Nora and Lamecker, Hans and Szengel, Angelika and Amiridze, Natalja and Ramm, Heiko and Bindernagel, Matthias and Zachow, Stefan and Goubergrits, Leonid}, title = {Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity}, series = {Scientific Reports}, volume = {3755}, journal = {Scientific Reports}, number = {10}, doi = {10.1038/s41598-020-60755-3}, abstract = {This study's objective was the generation of a standardized geometry of the healthy nasal cavity. An average geometry of the healthy nasal cavity was generated using a statistical shape model based on 25 symptom-free subjects. Airflow within the average geometry and these geometries was calculated using fluid simulations. Integral measures of the nasal resistance, wall shear stresses (WSS) and velocities were calculated as well as cross-sectional areas (CSA). Furthermore, individual WSS and static pressure distributions were mapped onto the average geometry. The average geometry featured an overall more regular shape that resulted in less resistance, reduced wall shear stresses and velocities compared to the median of the 25 geometries. Spatial distributions of WSS and pressure of average geometry agreed well compared to the average distributions of all individual geometries. The minimal CSA of the average geometry was larger than the median of all individual geometries (83.4 vs. 74.7 mm²). The airflow observed within the average geometry of the healthy nasal cavity did not equal the average airflow of the individual geometries. While differences observed for integral measures were notable, the calculated values for the average geometry lay within the distributions of the individual parameters. Spatially resolved parameters differed less prominently.}, language = {en} }