@inproceedings{SharmaHendrychBesanconetal.2024, author = {Sharma, Kartikey and Hendrych, Deborah and Besan{\c{c}}on, Mathieu and Pokutta, Sebastian}, title = {Network Design for the Traffic Assignment Problem with Mixed-Integer Frank-Wolfe}, booktitle = {Proceedings of INFORMS Optimization Society Conference}, year = {2024}, language = {en} } @inproceedings{MexiShamsiBesanconetal.2024, author = {Mexi, Gioni and Shamsi, Somayeh and Besan{\c{c}}on, Mathieu and Bodic, Pierre}, title = {Probabilistic Lookahead Strong Branching via a Stochastic Abstract Branching Model}, volume = {14743}, booktitle = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2024}, doi = {10.1007/978-3-031-60599-4_4}, year = {2024}, abstract = {Strong Branching (SB) is a cornerstone of all modern branching rules used in the Branch-and-Bound (BnB) algorithm, which is at the center of Mixed-Integer Programming solvers. In its full form, SB evaluates all variables to branch on and then selects the one producing the best relaxation, leading to small trees, but high runtimes. State-of-the-art branching rules therefore use SB with working limits to achieve both small enough trees and short run times. So far, these working limits have been established empirically. In this paper, we introduce a theoretical approach to guide how much SB to use at each node within the BnB. We first define an abstract stochastic tree model of the BnB algorithm where the geometric mean dual gains of all variables follow a given probability distribution. This model allows us to relate expected dual gains to tree sizes and explicitly compare the cost of sampling an additional SB candidate with the reward in expected tree size reduction. We then leverage the insight from the abstract model to design a new stopping criterion for SB, which fits a distribution to the dual gains and, at each node, dynamically continues or interrupts SB. This algorithm, which we refer to as Probabilistic Lookahead Strong Branching, improves both the tree size and runtime over MIPLIB instances, providing evidence that the method not only changes the amount of SB, but allocates it better.}, language = {en} } @article{DesignolleIommazzoBesanconetal.2023, author = {Designolle, S{\´e}bastien and Iommazzo, Gabriele and Besan{\c{c}}on, Mathieu and Knebel, Sebastian and Gelß, Patrick and Pokutta, Sebastian}, title = {Improved local models and new Bell inequalities via Frank-Wolfe algorithms}, volume = {5}, journal = {Physical Review Research}, doi = {10.1103/PhysRevResearch.5.043059}, pages = {043059}, year = {2023}, abstract = {In Bell scenarios with two outcomes per party, we algorithmically consider the two sides of the membership problem for the local polytope: Constructing local models and deriving separating hyperplanes, that is, Bell inequalities. We take advantage of the recent developments in so-called Frank-Wolfe algorithms to significantly increase the convergence rate of existing methods. First, we study the threshold value for the nonlocality of two-qubit Werner states under projective measurements. Here, we improve on both the upper and lower bounds present in the literature. Importantly, our bounds are entirely analytical; moreover, they yield refined bounds on the value of the Grothendieck constant of order three: 1.4367⩽KG(3)⩽1.4546. Second, we demonstrate the efficiency of our approach in multipartite Bell scenarios, and present local models for all projective measurements with visibilities noticeably higher than the entanglement threshold. We make our entire code accessible as a julia library called BellPolytopes.jl.}, language = {en} } @article{BesanconGarciaLegatetal.2023, author = {Besan{\c{c}}on, Mathieu and Garcia, Joaquim Dias and Legat, Beno{\^i}t and Sharma, Akshay}, title = {Flexible Differentiable Optimization via Model Transformations}, volume = {36}, journal = {INFORMS Journal on Computing}, number = {2}, doi = {10.1287/ijoc.2022.0283}, pages = {456 -- 478}, year = {2023}, abstract = {We introduce DiffOpt.jl, a Julia library to differentiate through the solution of optimization problems with respect to arbitrary parameters present in the objective and/or constraints. The library builds upon MathOptInterface, thus leveraging the rich ecosystem of solvers and composing well with modeling languages like JuMP. DiffOpt offers both forward and reverse differentiation modes, enabling multiple use cases from hyperparameter optimization to backpropagation and sensitivity analysis, bridging constrained optimization with end-to-end differentiable programming. DiffOpt is built on two known rules for differentiating quadratic programming and conic programming standard forms. However, thanks to its ability to differentiate through model transformations, the user is not limited to these forms and can differentiate with respect to the parameters of any model that can be reformulated into these standard forms. This notably includes programs mixing affine conic constraints and convex quadratic constraints or objective function.}, language = {en} } @misc{BestuzhevaBesanconChenetal.2021, author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and van Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and van der Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc E. and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 8.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85309}, year = {2021}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack.}, language = {en} } @misc{BolusaniBesanconBestuzhevaetal.2024, author = {Bolusani, Suresh and Besan{\c{c}}on, Mathieu and Bestuzheva, Ksenia and Chmiela, Antonia and Dion{\´i}sio, Jo{\~a}o and Donkiewicz, Tim and van Doornmalen, Jasper and Eifler, Leon and Ghannam, Mohammed and Gleixner, Ambros and Graczyk, Christoph and Halbig, Katrin and Hedtke, Ivo and Hoen, Alexander and Hojny, Christopher and van der Hulst, Rolf and Kamp, Dominik and Koch, Thorsten and Kofler, Kevin and Lentz, Jurgen and Manns, Julian and Mexi, Gioni and M{\"u}hmer, Erik and E. Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Turner, Mark and Vigerske, Stefan and Weninger, Dieter and Xu, Liding}, title = {The SCIP Optimization Suite 9.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-95528}, year = {2024}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a new cut generator and two new cut selection schemes, a new branching rule, a new LP interface, and several bug fixes. The SCIP Optimization Suite 9.0 also features new Rust and C++ interfaces for SCIP, new Python interface for SoPlex, along with enhancements to existing interfaces. The SCIP Optimization Suite 9.0 also includes new and improved features in the LP solver SoPlex, the presolving library PaPILO, the parallel framework UG, the decomposition framework GCG, and the SCIP extension SCIP-SDP. These additions and enhancements have resulted in an overall performance improvement of SCIP in terms of solving time, number of nodes in the branch-and-bound tree, as well as the reliability of the solver.}, language = {en} } @article{BestuzhevaBesanconChenetal.2023, author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {Enabling research through the SCIP optimization suite 8.0}, volume = {49}, journal = {ACM Transactions on Mathematical Software}, number = {2}, doi = {10.1145/3585516}, pages = {1 -- 21}, year = {2023}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. The focus of this article is on the role of the SCIP Optimization Suite in supporting research. SCIP's main design principles are discussed, followed by a presentation of the latest performance improvements and developments in version 8.0, which serve both as examples of SCIP's application as a research tool and as a platform for further developments. Furthermore, this article gives an overview of interfaces to other programming and modeling languages, new features that expand the possibilities for user interaction with the framework, and the latest developments in several extensions built upon SCIP.}, language = {en} } @inproceedings{MexiBesanconBolusanietal.2023, author = {Mexi, Gioni and Besan{\c{c}}on, Mathieu and Bolusani, Suresh and Chmiela, Antonia and Hoen, Alexander and Gleixner, Ambros}, title = {Scylla: a matrix-free fix-propagate-and-project heuristic for mixed-integer optimization}, booktitle = {Proceedings of Conference of the Society for Operations Research in Germany}, year = {2023}, language = {en} } @article{TurnerBertholdBesanconetal.2023, author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Branching via Cutting Plane Selection: Improving Hybrid Branching}, publisher = {Springer}, year = {2023}, abstract = {Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a \$4\\%\$ decrease in solve time, and an \$8\\%\$ decrease in number of nodes over affected instances of MIPLIB 2017.}, language = {en} }