@article{AndresArconesWeiserKoutsourelakisetal.2024, author = {Andr{\´e}s Arcones, Daniel and Weiser, Martin and Koutsourelakis, Faidon-Stelios and Unger, J{\"o}rg F.}, title = {Model bias identification for Bayesian calibration of stochastic digital twins of bridges}, volume = {41}, journal = {Applied Stochastic Models in Business and Industry}, number = {3}, doi = {10.1002/asmb.2897}, year = {2024}, abstract = {Simulation-based digital twins must provide accurate, robust and reliable digital representations of their physical counterparts. Quantifying the uncertainty in their predictions plays, therefore, a key role in making better-informed decisions that impact the actual system. The update of the simulation model based on data must be then carefully implemented. When applied to complex standing structures such as bridges, discrepancies between the computational model and the real system appear as model bias, which hinders the trustworthiness of the digital twin and increases its uncertainty. Classical Bayesian updating approaches aiming to infer the model parameters often fail at compensating for such model bias, leading to overconfident and unreliable predictions. In this paper, two alternative model bias identification approaches are evaluated in the context of their applicability to digital twins of bridges. A modularized version of Kennedy and O'Hagan's approach and another one based on Orthogonal Gaussian Processes are compared with the classical Bayesian inference framework in a set of representative benchmarks. Additionally, two novel extensions are proposed for such models: the inclusion of noise-aware kernels and the introduction of additional variables not present in the computational model through the bias term. The integration of such approaches in the digital twin corrects the predictions, quantifies their uncertainty, estimates noise from unknown physical sources of error and provides further insight into the system by including additional pre-existing information without modifying the computational model.}, language = {en} } @article{GoebelHuynhCheginietal.2025, author = {G{\"o}bel, Fritz and Huynh, Ngoc Mai Monica and Chegini, Fatemeh and Pavarino, Luca and Weiser, Martin and Scacchi, Simone and Anzt, Hartwig}, title = {A BDDC Preconditioner for the Cardiac EMI Model in three Dimensions}, journal = {SIAM J. Sci. Comput.}, arxiv = {http://arxiv.org/abs/2502.07722}, year = {2025}, abstract = {We analyze a Balancing Domain Decomposition by Constraints (BDDC) preconditioner for the solution of three dimensional composite Discontinuous Galerkin discretizations of reaction-diffusion systems of ordinary and partial differential equations arising in cardiac cell-by-cell models like the Extracellular space, Membrane and Intracellular space (EMI) Model. These microscopic models are essential for the understanding of events in aging and structurally diseased hearts which macroscopic models relying on homogenized descriptions of the cardiac tissue, like Monodomain and Bidomain models, fail to adequately represent. The modeling of each individual cardiac cell results in discontinuous global solutions across cell boundaries, requiring the careful construction of dual and primal spaces for the BDDC preconditioner. We provide a scalable condition number bound for the precondition operator and validate the theoretical results with extensive numerical experiments.}, language = {en} } @article{SubramaniamHubigSchenkletal.2025, author = {Subramaniam, Jayant Shanmugam and Hubig, Michael and Schenkl, Sebastian and Muggenthaler, Holger and Springer, Steffen and Weiser, Martin and Sudau, Jakob and Shah, Faisal and Mall, Gita}, title = {Reconstructing Ambient Temperature in Forensic Death Time Estimation}, year = {2025}, abstract = {In medicolegal practice, time since death is estimated to assess alibi for homicide cases. Ambient temperature TA has a strong impact on cooling and therefore on temperature based time since death estimation (TTDE). At many crimescenes the ambient temperature TA1 is lowered instantaneously from a start value TA0 to a value TA1 at a certain time t0 during investigations due to human intervention such as window or door opening or body transport. Usually TA0 and t0 are unknown to the investigators. In this paper we focus on reconstruction of the unknown parameters TA0 and t0. Our approach is inspired by TTDE literature remarks of detecting said changes by measuring temperatures in closed compartments as e.g. cupboards or neighboring rooms of the crime scene, where TA0 could have been 'preserved' after t0. We aim to estimate t0 and TA0 from temperature measurements TZ(t) in closed compartments Z at times t > t0. We got results even under the most trivial assumption of Newtonian cooling for boxes filled with air, with heaps of clothes or even with books in two different experimental scenarios. Two different parameter estimators, (t0^, TA0^) using a single quadruple temperature measurement in two boxes and (t0*, TA0*) on the basis of weighted averaging the results of a series of N quadruple measurements during cooling of the two boxes respectively, were tested. Our results were partially appropriate for TTDE input. For example a sudden decline at time t0 from TA0 = 22.5°C to TA1 = 14°C of the ambient temperature in a climate chamber could be reconstructed at t = t0 + 95min with relative deviations ρt0^ = 27\% and ρTA0^ = 19\% of the estimators relative to t - t0 and TA0 - TA1 respectively, only based on N = 1 quadruple measurement with a span of Δt = 50min. In case of N = 200 quadruple measurements starting at t = t0 + 95min and ending at t = t0 + 295min we found for weighted mean estimators distinctively reduced relative deviations ρt0^ = 5\% and ρTA0^ = 11\% with the same quadruple span Δt = 50min. Further research is necessary to guarantee applicability in routine case work. We will investigate more elaborate cooling models, estimation algorithms and evaluation localization.}, language = {en} } @article{AndresArconesWeiserKoutsourelakisetal.2024, author = {Andr{\´e}s Arcones, Daniel and Weiser, Martin and Koutsourelakis, Phaedon-Stelios and Unger, J{\"o}rg F.}, title = {Bias Identification Approaches for Model Updating of Simulation-based Digital Twins of Bridges}, volume = {2}, journal = {Structural Health Monitoring in the Light of Climate Impact and Data Science. Research and Review Journal of Nondestructive Testing}, number = {2}, doi = {10.58286/30524}, year = {2024}, abstract = {Simulation-based digital twins of bridges have the potential not only to serve as monitoring devices of the current state of the structure but also to generate new knowledge through physical predictions that allow for better-informed decisionmaking. For an accurate representation of the bridge, the underlying models must be tuned to reproduce the real system. Nevertheless, the necessary assumptions and simplifications in these models irremediably introduce discrepancies between measurements and model response. We will show that quantifying the extent of the uncertainties introduced through the models that lead to such discrepancies provides a better understanding of the real system, enhances the model updating process, and creates more robust and trustworthy digital twins. The inclusion of an explicit bias term will be applied to a representative demonstrator case based on the thermal response of the Nibelungenbr{\"u}cke of Worms. The findings from this work are englobed in the initiative SPP 100+, whose main aim is the extension of the service life of structures, especially through the implementation of digital twins.}, language = {en} } @article{AndresArconesWeiserKoutsourelakisetal.2025, author = {Andr{\´e}s Arcones, Daniel and Weiser, Martin and Koutsourelakis, Phaedon-Stelios and Unger, J{\"o}rg F.}, title = {Embedded Model Form Uncertainty Quantification with Measurement Noise for Bayesian Model Calibration}, arxiv = {http://arxiv.org/abs/2410.12037}, year = {2025}, abstract = {A key factor in ensuring the accuracy of computer simulations that model physical systems is the proper calibration of their parameters based on real-world observations or experimental data. Inevitably, uncertainties arise, and Bayesian methods provide a robust framework for quantifying and propagating these uncertainties to model predictions. Nevertheless, Bayesian methods paired with inexact models usually produce predictions unable to represent the observed datapoints. Additionally, the quantified uncertainties of these overconfident models cannot be propagated to other Quantities of Interest (QoIs) reliably. A promising solution involves embedding a model inadequacy term in the inference parameters, allowing the quantified model form uncertainty to influence non-observed QoIs. This paper introduces a more interpretable framework for embedding the model inadequacy compared to existing methods. To overcome the limitations of current approaches, we adapt the existing likelihood models to properly account for noise in the measurements and propose two new formulations designed to address their shortcomings. Moreover, we evaluate the performance of this inadequacy-embedding approach in the presence of discrepancies between measurements and model predictions, including noise and outliers. Particular attention is given to how the uncertainty associated with the model inadequacy term propagates to the QoIs, enabling a more comprehensive statistical analysis of prediction's reliability. Finally, the proposed approach is applied to estimate the uncertainty in the predicted heat flux from a transient thermal simulation using temperature bservations.}, language = {en} } @article{NiemannUramWolfetal.2024, author = {Niemann, Jan-Hendrik and Uram, Samuel and Wolf, Sarah and Conrad, Natasa Djurdjevac and Weiser, Martin}, title = {Multilevel Optimization for Policy Design with Agent-Based Epidemic Models}, volume = {77}, journal = {Computational Science}, arxiv = {http://arxiv.org/abs/2304.02281}, doi = {10.1016/j.jocs.2024.102242}, pages = {102242}, year = {2024}, abstract = {Epidemiological models can not only be used to forecast the course of a pandemic like COVID-19, but also to propose and design non-pharmaceutical interventions such as school and work closing. In general, the design of optimal policies leads to nonlinear optimization problems that can be solved by numerical algorithms. Epidemiological models come in different complexities, ranging from systems of simple ordinary differential equations (ODEs) to complex agent-based models (ABMs). The former allow a fast and straightforward optimization, but are limited in accuracy, detail, and parameterization, while the latter can resolve spreading processes in detail, but are extremely expensive to optimize. We consider policy optimization in a prototypical situation modeled as both ODE and ABM, review numerical optimization approaches, and propose a heterogeneous multilevel approach based on combining a fine-resolution ABM and a coarse ODE model. Numerical experiments, in particular with respect to convergence speed, are given for illustrative examples.}, language = {en} } @inproceedings{GanderKrauseWeiseretal.2023, author = {Gander, Lia and Krause, Rolf and Weiser, Martin and Costabal, Francisco and Pezzuto, Simone}, title = {On the Accuracy of Eikonal Approximations in Cardiac Electrophysiology in the Presence of Fibrosis}, volume = {13958}, booktitle = {Functional Imaging and Modeling of the Heart. FIMH 2023.}, publisher = {Springer, Cham}, doi = {10.1007/978-3-031-35302-4_14}, year = {2023}, abstract = {Fibrotic tissue is one of the main risk factors for cardiac arrhythmias. It is therefore a key component in computational studies. In this work, we compare the monodomain equation to two eikonal models for cardiac electrophysiology in the presence of fibrosis. We show that discontinuities in the conductivity field, due to the presence of fibrosis, introduce a delay in the activation times. The monodomain equation and eikonal-diffusion model correctly capture these delays, contrarily to the classical eikonal equation. Importantly, a coarse space discretization of the monodomain equation amplifies these delays, even after accounting for numerical error in conduction velocity. The numerical discretization may also introduce artificial conduction blocks and hence increase propagation complexity. Therefore, some care is required when comparing eikonal models to the discretized monodomain equation.}, language = {en} } @article{SemlerWeiser2023, author = {Semler, Phillip and Weiser, Martin}, title = {Adaptive Gaussian Process Regression for Efficient Building of Surrogate Models in Inverse Problems}, volume = {39}, journal = {Inverse Problems}, number = {12}, arxiv = {http://arxiv.org/abs/2303.05824}, doi = {10.1088/1361-6420/ad0028}, pages = {125003}, year = {2023}, abstract = {In a task where many similar inverse problems must be solved, evaluating costly simulations is impractical. Therefore, replacing the model y with a surrogate model y(s) that can be evaluated quickly leads to a significant speedup. The approximation quality of the surrogate model depends strongly on the number, position, and accuracy of the sample points. With an additional finite computational budget, this leads to a problem of (computer) experimental design. In contrast to the selection of sample points, the trade-off between accuracy and effort has hardly been studied systematically. We therefore propose an adaptive algorithm to find an optimal design in terms of position and accuracy. Pursuing a sequential design by incrementally appending the computational budget leads to a convex and constrained optimization problem. As a surrogate, we construct a Gaussian process regression model. We measure the global approximation error in terms of its impact on the accuracy of the identified parameter and aim for a uniform absolute tolerance, assuming that y(s) is computed by finite element calculations. A priori error estimates and a coarse estimate of computational effort relate the expected improvement of the surrogate model error to computational effort, resulting in the most efficient combination of sample point and evaluation tolerance. We also allow for improving the accuracy of already existing sample points by continuing previously truncated finite element solution procedures.}, language = {en} } @inproceedings{CheginiSteinkeWeiser2022, author = {Chegini, Fatemeh and Steinke, Thomas and Weiser, Martin}, title = {Efficient adaptivity for simulating cardiac electrophysiology with spectral deferred correction methods}, arxiv = {http://arxiv.org/abs/2311.07206}, year = {2022}, abstract = {The locality of solution features in cardiac electrophysiology simulations calls for adaptive methods. Due to the overhead incurred by established mesh refinement and coarsening, however, such approaches failed in accelerating the computations. Here we investigate a different route to spatial adaptivity that is based on nested subset selection for algebraic degrees of freedom in spectral deferred correction methods. This combination of algebraic adaptivity and iterative solvers for higher order collocation time stepping realizes a multirate integration with minimal overhead. This leads to moderate but significant speedups in both monodomain and cell-by-cell models of cardiac excitation, as demonstrated at four numerical examples.}, language = {en} } @article{CardereraPokuttaSchuetteetal.2021, author = {Carderera, Alejandro and Pokutta, Sebastian and Sch{\"u}tte, Christof and Weiser, Martin}, title = {An efficient first-order conditional gradient algorithm in data-driven sparse identification of nonlinear dynamics to solve sparse recovery problems under noise}, journal = {Journal of Computational and Applied Mathematics}, arxiv = {http://arxiv.org/abs/2101.02630}, year = {2021}, abstract = {Governing equations are essential to the study of nonlinear dynamics, often enabling the prediction of previously unseen behaviors as well as the inclusion into control strategies. The discovery of governing equations from data thus has the potential to transform data-rich fields where well-established dynamical models remain unknown. This work contributes to the recent trend in data-driven sparse identification of nonlinear dynamics of finding the best sparse fit to observational data in a large library of potential nonlinear models. We propose an efficient first-order Conditional Gradient algorithm for solving the underlying optimization problem. In comparison to the most prominent alternative algorithms, the new algorithm shows significantly improved performance on several essential issues like sparsity-induction, structure-preservation, noise robustness, and sample efficiency. We demonstrate these advantages on several dynamics from the field of synchronization, particle dynamics, and enzyme chemistry.}, language = {en} } @article{CheginiKopanicakovaKrauseetal.2021, author = {Chegini, Fatemeh and Kopanicakova, Alena and Krause, Rolf and Weiser, Martin}, title = {Efficient Identification of Scars using Heterogeneous Model Hierarchies}, volume = {23}, journal = {EP Europace}, doi = {10.1093/europace/euaa402}, pages = {i113 -- i122}, year = {2021}, abstract = {Aims. Detection and quantification of myocardial scars are helpful both for diagnosis of heart diseases and for building personalized simulation models. Scar tissue is generally charac­terized by a different conduction of electrical excitation. We aim at estimating conductivity-related parameters from endocardial mapping data, in particular the conductivity tensor. Solving this inverse problem requires computationally expensive monodomain simulations on fine discretizations. Therefore, we aim at accelerating the estimation using a multilevel method combining electrophysiology models of different complexity, namely the mono­domain and the eikonal model. Methods. Distributed parameter estimation is performed by minimizing the misfit between simulated and measured electrical activity on the endocardial surface, subject to the mono­domain model and regularization, leading to a constrained optimization problem. We formulate this optimization problem, including the modeling of scar tissue and different regularizations, and design an efficient iterative solver. We consider monodomain grid hierarchies and monodomain-eikonal model hierarchies in a recursive multilevel trust-region method. Results. From several numerical examples, both the efficiency of the method and the estimation quality, depending on the data, are investigated. The multilevel solver is significantly faster than a comparable single level solver. Endocardial mapping data of realistic density appears to be just sufficient to provide quantitatively reasonable estimates of location, size, and shape of scars close to the endocardial surface. Conclusion. In several situations, scar reconstruction based on eikonal and monodomain models differ significantly, suggesting the use of the more accurate but more expensive monodomain model for this purpose. Still, eikonal models can be utilized to accelerate the computations considerably, enabling the use of complex electrophysiology models for estimating myocardial scars from endocardial mapping data.}, language = {en} } @book{DeuflhardWeiser2020, author = {Deuflhard, Peter and Weiser, Martin}, title = {Numerische Mathematik 3. Adaptive L{\"o}sung partieller Differentialgleichungen}, edition = {2}, publisher = {de Gruyter}, isbn = {978-3-11-069168-9}, doi = {10.1515/9783110689655}, pages = {456}, year = {2020}, language = {de} } @article{SchielaStoeckleinWeiser2021, author = {Schiela, Anton and St{\"o}cklein, Matthias and Weiser, Martin}, title = {A primal dual projection algorithm for efficient constraint preconditioning}, volume = {43}, journal = {SIAM Journal on Scientific Computing}, number = {6}, doi = {10.1137/20M1380739}, pages = {A4095 -- A4120}, year = {2021}, abstract = {We consider a linear iterative solver for large scale linearly constrained quadratic minimization problems that arise, for example, in optimization with PDEs. By a primal-dual projection (PDP) iteration, which can be interpreted and analysed as a gradient method on a quotient space, the given problem can be solved by computing sulutions for a sequence of constrained surrogate problems, projections onto the feasible subspaces, and Lagrange multiplier updates. As a major application we consider a class of optimization problems with PDEs, where PDP can be applied together with a projected cg method using a block triangular constraint preconditioner. Numerical experiments show reliable and competitive performance for an optimal control problem in elasticity.}, language = {en} } @inproceedings{SteyerCheginiPotseetal.2023, author = {Steyer, Joshua and Chegini, Fatemeh and Potse, Mark and Loewe, Axel and Weiser, Martin}, title = {Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model}, volume = {50}, booktitle = {2023 Computing in Cardiology Conference (CinC)}, publisher = {Computing in Cardiology}, issn = {2325-887X}, doi = {10.22489/CinC.2023.385}, year = {2023}, abstract = {Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CV and how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular-membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the microscopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell.}, language = {en} } @inproceedings{CheginiFroehlyHuynhetal.2023, author = {Chegini, Fatemeh and Froehly, Algiane and Huynh, Ngoc Mai Monica and Pavarino, Luca and Potse, Mark and Scacchi, Simone and Weiser, Martin}, title = {Efficient numerical methods for simulating cardiac electrophysiology with cellular resolution}, booktitle = {10th Int. Conf. Computational Methods for Coupled Problems in Science and Engineering 2023}, doi = {10.23967/c.coupled.2023.004}, year = {2023}, abstract = {The cardiac extracellular-membrane-intracellular (EMI) model enables the precise geometrical representation and resolution of aggregates of individual myocytes. As a result, it not only yields more accurate simulations of cardiac excitation compared to homogenized models but also presents the challenge of solving much larger problems. In this paper, we introduce recent advancements in three key areas: (i) the creation of artificial, yet realistic grids, (ii) efficient higher-order time stepping achieved by combining low-overhead spatial adaptivity on the algebraic level with progressive spectral deferred correction methods, and (iii) substructuring domain decomposition preconditioners tailored to address the complexities of heterogeneous problem structures. The efficiency gains of these proposed methods are demonstrated through numerical results on cardiac meshes of different sizes.}, language = {en} } @inproceedings{SteyerCheginiStaryetal.2024, author = {Steyer, Joshua and Chegini, Fatemeh and Star{\´y}, Tomas and Potse, Mark and Weiser, Martin and Loewe, Axel}, title = {Electrograms in a Cardiac Cell-by-Cell Model}, booktitle = {Workshop Biosignals 2024}, doi = {10.47952/gro-publ-194}, year = {2024}, abstract = {Cardiac electrograms are an important tool to study the spread of excitation waves inside the heart, which in turn underlie muscle contraction. Electrograms can be used to analyse the dynamics of these waves, e.g. in fibrotic tissue. In computational models, these analyses can be done with greater detail than during minimally invasive in vivo procedures. Whilst homogenised models have been used to study electrogram genesis, such analyses have not yet been done in cellularly resolved models. Such high resolution may be required to develop a thorough understanding of the mechanisms behind abnormal excitation patterns leading to arrhythmias. In this study, we derived electrograms from an excitation propagation simulation in the Extracellular, Membrane, Intracellular (EMI) model, which represents these three domains explicitly in the mesh. We studied the effects of the microstructural excitation dynamics on electrogram genesis and morphology. We found that electrograms are sensitive to the myocyte alignment and connectivity, which translates into micro-fractionations in the electrograms.}, language = {en} } @article{BartelsFisikopoulosWeiser2023, author = {Bartels, Tinko and Fisikopoulos, Vissarion and Weiser, Martin}, title = {Fast Floating-Point Filters for Robust Predicates}, volume = {63}, journal = {BIT Numerical Mathematics}, arxiv = {http://arxiv.org/abs/2208.00497}, doi = {10.1007/s10543-023-00975-x}, year = {2023}, abstract = {Geometric predicates are at the core of many algorithms, such as the construction of Delaunay triangulations, mesh processing and spatial relation tests. These algorithms have applications in scientific computing, geographic information systems and computer-aided design. With floating-point arithmetic, these geometric predicates can incur round-off errors that may lead to incorrect results and inconsistencies, causing computations to fail. This issue has been addressed using a combination of exact arithmetic for robustness and floating-point filters to mitigate the computational cost of exact computations. The implementation of exact computations and floating-point filters can be a difficult task, and code generation tools have been proposed to address this. We present a new C++ meta-programming framework for the generation of fast, robust predicates for arbitrary geometric predicates based on polynomial expressions. We combine and extend different approaches to filtering, branch reduction, and overflow avoidance that have previously been proposed. We show examples of how this approach produces correct results for data sets that could lead to incorrect predicate results with naive implementations. Our benchmark results demonstrate that our implementation surpasses state-of-the-art implementations.}, language = {en} } @article{BorndoerferDaneckerWeiser2021, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {A Discrete-Continuous Algorithm for Free Flight Planning}, volume = {14}, journal = {Algorithms}, number = {1}, publisher = {MDPI}, issn = {1438-0064}, doi = {10.3390/a14010004}, pages = {4}, year = {2021}, abstract = {We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.}, language = {en} } @misc{BaumannDudaSchielaetal.2026, author = {Baumann, Felix and Duda, Georg and Schiela, Anton and Weiser, Martin}, title = {Identification of Stress in Heterogeneous Contact Models}, journal = {Non-Smooth and Complementarity-Based Distributed Parameter Systems}, editor = {Hinterm{\"u}ller, Michael}, publisher = {Springer Nature}, year = {2026}, abstract = {We develop a heterogeneous model of the lower limb system to simulate muscle forces and stresses acting on the knee joint. The modelling of the bone dynamics leads to an index-3 DAE, which we discretize by higher order collocation methods. Furthermore, we present an elastomechanical contact knee joint model of the articular cartilage. For the solution of the contact problem we develop an efficient multigrid solver, based on an Augmented-Lagrangian relaxation of the contact constraints. We formulate the identification of joint forces and resulting stresses with respect to different knee joint models as an inverse problem based on medical gait data.}, language = {en} } @article{CardereraPokuttaSchuetteetal.2025, author = {Carderera, Alejandro and Pokutta, Sebastian and Sch{\"u}tte, Christof and Weiser, Martin}, title = {An efficient first-order conditional gradient algorithm in data-driven sparse identification of nonlinear dynamics to solve sparse recovery problems under noise}, volume = {470}, journal = {Journal of Computational and Applied Mathematics}, doi = {10.1016/j.cam.2025.116675}, year = {2025}, abstract = {Governing equations are essential to the study of nonlinear dynamics, often enabling the prediction of previously unseen behaviors as well as the inclusion into control strategies. The discovery of governing equations from data thus has the potential to transform data-rich fields where well-established dynamical models remain unknown. This work contributes to the recent trend in data-driven sparse identification of nonlinear dynamics of finding the best sparse fit to observational data in a large library of potential nonlinear models. We propose an efficient first-order Conditional Gradient algorithm for solving the underlying optimization problem. In comparison to the most prominent alternative framework, the new framework shows significantly improved performance on several essential issues like sparsity-induction, structure-preservation, noise robustness, and sample efficiency. We demonstrate these advantages on several dynamics from the field of synchronization, particle dynamics, and enzyme chemistry.}, language = {en} }