@incollection{DeuflhardWeiser1997, author = {Deuflhard, Peter and Weiser, Martin}, title = {Local inexact Newton multilevel FEM for nonlinear elliptic problems}, booktitle = {Computational science for the 21st century}, editor = {et al. Bristeau, M.-O.}, publisher = {Chichester: John Wiley \& Sons.}, pages = {129 -- 138}, year = {1997}, language = {en} } @inproceedings{DeuflhardWeiser1998, author = {Deuflhard, Peter and Weiser, Martin}, title = {Global inexact Newton multilevel FEM for nonlinear elliptic problems}, volume = {3}, booktitle = {Multigrid methods V. proceedings of the 5th European multigrid conference, held in Stuttgart, Germany, October 1-4, 1996.}, editor = {et al. Hackbusch, Wolfgang}, publisher = {Berlin: Springer}, pages = {71 -- 89}, year = {1998}, language = {en} } @book{DeuflhardWeiser2011, author = {Deuflhard, Peter and Weiser, Martin}, title = {Numerische Mathematik 3}, publisher = {de Gruyter, Berlin}, year = {2011}, language = {de} } @book{DeuflhardWeiser2012, author = {Deuflhard, Peter and Weiser, Martin}, title = {Adaptive numerical solution of PDEs}, publisher = {de Gruyter}, address = {Berlin}, year = {2012}, language = {en} } @article{DeuflhardWeiserZachow2006, author = {Deuflhard, Peter and Weiser, Martin and Zachow, Stefan}, title = {Mathematics in Facial Surgery}, volume = {53}, journal = {AMS Notices}, number = {9}, pages = {1012 -- 1016}, year = {2006}, language = {en} } @article{WeiserZachowDeuflhard2010, author = {Weiser, Martin and Zachow, Stefan and Deuflhard, Peter}, title = {Craniofacial Surgery Planning Based on Virtual Patient Models}, volume = {52}, journal = {it - Information Technology}, number = {5}, publisher = {Oldenbourg Verlagsgruppe}, doi = {10.1524/itit.2010.0600}, pages = {258 -- 263}, year = {2010}, language = {en} } @inproceedings{WeiserScacchi2017, author = {Weiser, Martin and Scacchi, Simone}, title = {Spectral Deferred Correction methods for adaptive electro-mechanical coupling in cardiac simulation}, booktitle = {G. Russo et al.(eds.) Progress in Industrial Mathematics at ECMI 2014}, publisher = {Springer}, doi = {10.1007/978-3-319-23413-7_42}, pages = {321 -- 328}, year = {2017}, abstract = {We investigate spectral deferred correction (SDC) methods for time stepping and their interplay with spatio-temporal adaptivity, applied to the solution of the cardiac electro-mechanical coupling model. This model consists of the Monodomain equations, a reaction-diffusion system modeling the cardiac bioelectrical activity, coupled with a quasi-static mechanical model describing the contraction and relaxation of the cardiac muscle. The numerical approximation of the cardiac electro-mechanical coupling is a challenging multiphysics problem, because it exhibits very different spatial and temporal scales. Therefore, spatio-temporal adaptivity is a promising approach to reduce the computational complexity. SDC methods are simple iterative methods for solving collocation systems. We exploit their flexibility for combining them in various ways with spatio-temporal adaptivity. The accuracy and computational complexity of the resulting methods are studied on some numerical examples.}, language = {en} } @inproceedings{GoetschelHoehneKolkoorietal.2016, author = {G{\"o}tschel, Sebastian and H{\"o}hne, Christian and Kolkoori, Sanjeevareddy and Mitzscherling, Steffen and Prager, Jens and Weiser, Martin}, title = {Ray Tracing Boundary Value Problems: Simulation and SAFT Reconstruction for Ultrasonic Testing}, booktitle = {Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016)}, year = {2016}, language = {en} } @inproceedings{GoetschelMaierhoferMuelleretal.2016, author = {G{\"o}tschel, Sebastian and Maierhofer, Christiane and M{\"u}ller, Jan and Rothbart, Nick and Weiser, Martin}, title = {Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced Composites}, booktitle = {Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016)}, year = {2016}, language = {en} } @inproceedings{MuellerGoetschelMaierhoferetal.2017, author = {M{\"u}ller, Jan and G{\"o}tschel, Sebastian and Maierhofer, Christiane and Weiser, Martin}, title = {Determining the material parameters for the reconstruction of defects in carbon fiber reinforced polymers from data measured by flash thermography}, volume = {1806}, booktitle = {AIP Conference Proceedings}, doi = {10.1063/1.4974671}, year = {2017}, language = {en} } @article{FischerGoetschelWeiser2018, author = {Fischer, Lisa and G{\"o}tschel, Sebastian and Weiser, Martin}, title = {Lossy data compression reduces communication time in hybrid time-parallel integrators}, volume = {19}, journal = {Comput. Vis. Sci.}, number = {1}, doi = {10.1007/s00791-018-0293-2}, pages = {19 -- 30}, year = {2018}, abstract = {Parallel in time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel in time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet no sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups.}, language = {en} } @misc{DeuflhardKornhuberSanderetal.2014, author = {Deuflhard, Peter and Kornhuber, Ralf and Sander, Oliver and Schiela, Anton and Weiser, Martin}, title = {Mathematics cures virtual patients}, volume = {1}, journal = {MATHEON-Mathematics for Key Technologies}, editor = {Deuflhard, Peter and Gr{\"o}tschel, Martin and H{\"o}mberg, Dietmar and Horst, Ulrich and Kramer, J{\"u}rg and Mehrmann, Volker and Polthier, Konrad and Schmidt, Frank and Sch{\"u}tte, Christof and Skutella, Martin and Sprekels, J{\"u}rgen}, publisher = {European Mathematical Society}, pages = {7 -- 25}, year = {2014}, language = {en} } @article{MoualeuNgangueWeiserEhrigetal.2015, author = {Moualeu-Ngangue, Dany Pascal and Weiser, Martin and Ehrig, Rainald and Deuflhard, Peter}, title = {Optimal control for a tuberculosis model with undetected cases in Cameroon}, volume = {20}, journal = {Communications in Nonlinear Science and Numerical Simulation}, number = {3}, doi = {10.1016/j.cnsns.2014.06.037}, pages = {986 -- 1003}, year = {2015}, abstract = {This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 \% in 10 years.}, language = {en} } @misc{GoetschelWeiserMaierhoferetal.2012, author = {G{\"o}tschel, Sebastian and Weiser, Martin and Maierhofer, Christiane and Richter, Regina}, title = {Data Enhancement for Active Thermography}, journal = {E-book Proceedings, 11th International Conference on Quantitative Infrared Thermography, Naples}, editor = {Cardone, Gennaro}, year = {2012}, abstract = {Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise.}, language = {en} } @article{Weiser2013, author = {Weiser, Martin}, title = {On goal-oriented adaptivity for elliptic optimal control problems}, volume = {28}, journal = {Opt. Meth. Softw.}, number = {13}, pages = {969 -- 992}, year = {2013}, abstract = {The paper proposes goal-oriented error estimation and mesh refinement for optimal control problems with elliptic PDE constraints using the value of the reduced cost functional as quantity of interest. Error representation, hierarchical error estimators, and greedy-style error indicators are derived and compared to their counterparts when using the all-at-once cost functional as quantity of interest. Finally, the efficiency of the error estimator and generated meshes are demonstrated on numerical examples.}, language = {en} } @article{DeuflhardSchielaWeiser2012, author = {Deuflhard, Peter and Schiela, Anton and Weiser, Martin}, title = {Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia}, volume = {21}, journal = {Acta Numerica}, pages = {307 -- 378}, year = {2012}, abstract = {This paper surveys the required mathematics for a typical challenging problem from computational medicine, the cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem gave rise to quite a number of subtle mathematical problems, part of which had been unsolved when the common project started. Efficiency of numerical algorithms, i.e. computational speed and monitored reliability, play a decisive role for the medical treatment. Off-the-shelf software had turned out to be not sufficient to meet the requirements of medicine. Rather, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, a virtual lab, including 3D geometry processing of individual virtual patients had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analyzed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the individual patients' treatment and on the construction of an improved hyperthermia applicator.}, language = {en} } @misc{GoetschelWeiserSchiela2012, author = {G{\"o}tschel, Sebastian and Weiser, Martin and Schiela, Anton}, title = {Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox}, journal = {Advances in DUNE}, editor = {Dedner, A. and Flemisch, B. and Kl{\"o}fkorn, R.}, publisher = {Springer}, pages = {101 -- 112}, year = {2012}, abstract = {This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study.}, language = {en} } @article{Weiser2015, author = {Weiser, Martin}, title = {Faster SDC convergence on non-equidistant grids by DIRK sweeps}, volume = {55}, journal = {BIT Numerical Mathematics}, number = {4}, doi = {10.1007/s10543-014-0540-y}, pages = {1219 -- 1241}, year = {2015}, abstract = {Spectral deferred correction methods for solving stiff ODEs are known to converge rapidly towards the collocation limit solution on equidistant grids, but show a much less favourable contraction on non-equidistant grids such as Radau-IIa points. We interprete SDC methods as fixed point iterations for the collocation system and propose new DIRK-type sweeps for stiff problems based on purely linear algebraic considerations. Good convergence is recovered also on non-equidistant grids. The properties of different variants are explored on a couple of numerical examples.}, language = {en} } @article{WeiserGoetschel2012, author = {Weiser, Martin and G{\"o}tschel, Sebastian}, title = {State Trajectory Compression for Optimal Control with Parabolic PDEs}, volume = {34}, journal = {SIAM J. Sci. Comput.}, number = {1}, doi = {10.1137/11082172X}, pages = {A161 -- A184}, year = {2012}, abstract = {In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and quasi-Newton methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy coding maintaining an error bound is sufficient.}, language = {en} } @misc{NadobnyWeihrauchWeiseretal.2007, author = {Nadobny, Johanna and Weihrauch, Mirko and Weiser, Martin and Gellermann, Johanna and Wlodarczyk, Waldemar and Budach, Volker and Wust, Peter}, title = {Advances in the Planning and Control of the MR-guided Regional Hyperthermia Applications}, journal = {Proc. Int. Conf. Electromagnetics in Advanced Applications, ICEAA 2007, Torino, Italy}, pages = {1010 -- 1013}, year = {2007}, language = {en} }