@article{WeiserErdmannSchenkletal., author = {Weiser, Martin and Erdmann, Bodo and Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Mall, Gita and Zachow, Stefan}, title = {Uncertainty in Temperature-Based Determination of Time of Death}, series = {Heat and Mass Transfer}, volume = {54}, journal = {Heat and Mass Transfer}, number = {9}, publisher = {Springer}, doi = {10.1007/s00231-018-2324-4}, pages = {2815 -- 2826}, abstract = {Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types.}, language = {en} } @article{WeiserGhosh, author = {Weiser, Martin and Ghosh, Sunayana}, title = {Theoretically optimal inexact SDC methods}, series = {Communications in Applied Mathematics and Computational Science}, journal = {Communications in Applied Mathematics and Computational Science}, number = {13-1}, doi = {10.2140/camcos.2018.13.53}, pages = {53 -- 86}, abstract = {In several inital value problems with particularly expensive right hand side evaluation or implicit step computation, there is a trade-off between accuracy and computational effort. We consider inexact spectral deferred correction (SDC) methods for solving such initial value problems. SDC methods are interpreted as fixed point iterations and, due to their corrective iterative nature, allow to exploit the accuracy-work-tradeoff for a reduction of the total computational effort. On one hand we derive error models bounding the total error in terms of the evaluation errors. On the other hand, we define work models describing the computational effort in terms of the evaluation accuracy. Combining both, a theoretically optimal local tolerance selection is worked out by minimizing the total work subject to achieving the requested tolerance. The properties of optimal local tolerances and the predicted efficiency gain compared to simpler heuristics, and a reasonable practical performance, are illustrated on simple numerical examples.}, language = {en} } @inproceedings{GoetschelHoehneKolkoorietal., author = {G{\"o}tschel, Sebastian and H{\"o}hne, Christian and Kolkoori, Sanjeevareddy and Mitzscherling, Steffen and Prager, Jens and Weiser, Martin}, title = {Ray Tracing Boundary Value Problems: Simulation and SAFT Reconstruction for Ultrasonic Testing}, series = {Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016)}, booktitle = {Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016)}, language = {en} } @inproceedings{GoetschelMaierhoferMuelleretal., author = {G{\"o}tschel, Sebastian and Maierhofer, Christiane and M{\"u}ller, Jan and Rothbart, Nick and Weiser, Martin}, title = {Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced Composites}, series = {Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016)}, booktitle = {Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016)}, language = {en} } @inproceedings{MuellerGoetschelMaierhoferetal., author = {M{\"u}ller, Jan and G{\"o}tschel, Sebastian and Maierhofer, Christiane and Weiser, Martin}, title = {Determining the material parameters for the reconstruction of defects in carbon fiber reinforced polymers from data measured by flash thermography}, series = {AIP Conference Proceedings}, volume = {1806}, booktitle = {AIP Conference Proceedings}, doi = {10.1063/1.4974671}, language = {en} } @article{WeiserSchiela2004, author = {Weiser, Martin and Schiela, Anton}, title = {Function space interior point methods for PDE constrained optimization}, series = {PAMM}, volume = {4}, journal = {PAMM}, number = {1}, pages = {43 -- 46}, year = {2004}, language = {en} } @article{VolkweinWeiser2002, author = {Volkwein, S. and Weiser, Martin}, title = {Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian SQP Methods}, series = {SIAM J. Control Optim.}, volume = {41}, journal = {SIAM J. Control Optim.}, number = {3}, pages = {875 -- 899}, year = {2002}, language = {en} } @techreport{VolkweinWeiser2004, author = {Volkwein, S. and Weiser, Martin}, title = {Optimality Conditions for a Constrained Parameter Identification Problem in Hyperthermia}, number = {305}, publisher = {University of Graz, SFB F003}, address = {Graz, Austria}, year = {2004}, language = {en} } @article{WeiserGaenzlerSchiela2007, author = {Weiser, Martin and G{\"a}nzler, Tobias and Schiela, Anton}, title = {A control reduced primal interior point method for a class of control constrained optimal control problems}, series = {Comput. Optim. Appl.}, volume = {41}, journal = {Comput. Optim. Appl.}, number = {1}, pages = {127 -- 145}, year = {2007}, language = {en} } @article{WeiserSchielaDeuflhard2005, author = {Weiser, Martin and Schiela, Anton and Deuflhard, Peter}, title = {Asymptotic Mesh Independence of Newton's Method Revisited}, series = {SIAM J. Num. Anal.}, volume = {42}, journal = {SIAM J. Num. Anal.}, number = {5}, pages = {1830 -- 1845}, year = {2005}, language = {en} } @article{Weiser2009, author = {Weiser, Martin}, title = {Optimization and Identification in Regional Hyperthermia}, series = {Int. J. Appl. Electromagn. and Mech.}, volume = {30}, journal = {Int. J. Appl. Electromagn. and Mech.}, pages = {265 -- 275}, year = {2009}, language = {en} } @article{Weiser2009, author = {Weiser, Martin}, title = {Pointwise Nonlinear Scaling for Reaction-Diffusion Equations}, series = {Appl. Num. Math.}, volume = {59}, journal = {Appl. Num. Math.}, number = {8}, pages = {1858 -- 1869}, year = {2009}, language = {en} } @article{WeiserDeuflhardErdmann2007, author = {Weiser, Martin and Deuflhard, Peter and Erdmann, Bodo}, title = {Affine conjugate adaptive Newton methods for nonlinear elastomechanics}, series = {Opt. Meth. Softw.}, volume = {22}, journal = {Opt. Meth. Softw.}, number = {3}, pages = {413 -- 431}, year = {2007}, language = {en} } @article{WeihrauchWustWeiseretal.2007, author = {Weihrauch, Mirko and Wust, Peter and Weiser, Martin and Nadobny, Johanna and Eisenhardt, Steffen and Budach, Volker and Gellermann, Johanna}, title = {Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system}, series = {Medical Physics}, volume = {34}, journal = {Medical Physics}, number = {12}, pages = {4717 -- 4725}, year = {2007}, language = {en} } @article{Weiser2005, author = {Weiser, Martin}, title = {Interior point methods in function space}, series = {SIAM J. Control Optimization}, volume = {44}, journal = {SIAM J. Control Optimization}, number = {5}, pages = {1766 -- 1786}, year = {2005}, language = {en} } @article{SchenklMuggenthalerHubigetal.2017, author = {Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Erdmann, Bodo and Weiser, Martin and Zachow, Stefan and Heinrich, Andreas and G{\"u}ttler, Felix Victor and Teichgr{\"a}ber, Ulf and Mall, Gita}, title = {Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis}, series = {International Journal of Legal Medicine}, volume = {131}, journal = {International Journal of Legal Medicine}, number = {3}, doi = {doi:10.1007/s00414-016-1523-0}, pages = {699 -- 712}, year = {2017}, abstract = {Temperature based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex, but allow a higher accuracy of death time estimation as in principle all relevant cooling mechanisms can be taken into account. Here, a complete work flow for finite element based cooling simulation models is presented. The following steps are demonstrated on CT-phantoms: • CT-scan • Segmentation of the CT images for thermodynamically relevant features of individual geometries • Conversion of the segmentation result into a Finite Element (FE) simulation model • Computation of the model cooling curve • Calculation of the cooling time For the first time in FE-based cooling time estimation the steps from the CT image over segmentation to FE model generation are semi-automatically performed. The cooling time calculation results are compared to cooling measurements performed on the phantoms under controlled conditions. In this context, the method is validated using different CTphantoms. Some of the CT phantoms thermodynamic material parameters had to be experimentally determined via independent experiments. Moreover the impact of geometry and material parameter uncertainties on the estimated cooling time is investigated by a sensitivity analysis.}, language = {en} } @book{Weiser, author = {Weiser, Martin}, title = {Inside Finite Elements}, publisher = {De Gruyter}, abstract = {All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms.Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.}, language = {en} } @article{WeiserZachowDeuflhard2010, author = {Weiser, Martin and Zachow, Stefan and Deuflhard, Peter}, title = {Craniofacial Surgery Planning Based on Virtual Patient Models}, series = {it - Information Technology}, volume = {52}, journal = {it - Information Technology}, number = {5}, publisher = {Oldenbourg Verlagsgruppe}, doi = {10.1524/itit.2010.0600}, pages = {258 -- 263}, year = {2010}, language = {en} } @inproceedings{GoetschelTycowiczPolthieretal., author = {G{\"o}tschel, Sebastian and Tycowicz, Christoph von and Polthier, Konrad and Weiser, Martin}, title = {Reducing Memory Requirements in Scientific Computing and Optimal Control}, series = {Multiple Shooting and Time Domain Decomposition Methods}, booktitle = {Multiple Shooting and Time Domain Decomposition Methods}, editor = {Carraro, T. and Geiger, M. and Koerkel, S. and Rannacher, R.}, publisher = {Springer}, pages = {263 -- 287}, language = {en} } @article{GoetschelNagaiahKunischetal., author = {G{\"o}tschel, Sebastian and Nagaiah, Chamakuri and Kunisch, Karl and Weiser, Martin}, title = {Lossy Compression in Optimal Control of Cardiac Defibrillation}, series = {J. Sci. Comput.}, volume = {60}, journal = {J. Sci. Comput.}, number = {1}, doi = {10.1007/s10915-013-9785-x}, pages = {35 -- 59}, abstract = {This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples.}, language = {en} }