@article{SchielaStoeckleinWeiser2021, author = {Schiela, Anton and St{\"o}cklein, Matthias and Weiser, Martin}, title = {A primal dual projection algorithm for efficient constraint preconditioning}, volume = {43}, journal = {SIAM Journal on Scientific Computing}, number = {6}, doi = {10.1137/20M1380739}, pages = {A4095 -- A4120}, year = {2021}, abstract = {We consider a linear iterative solver for large scale linearly constrained quadratic minimization problems that arise, for example, in optimization with PDEs. By a primal-dual projection (PDP) iteration, which can be interpreted and analysed as a gradient method on a quotient space, the given problem can be solved by computing sulutions for a sequence of constrained surrogate problems, projections onto the feasible subspaces, and Lagrange multiplier updates. As a major application we consider a class of optimization problems with PDEs, where PDP can be applied together with a projected cg method using a block triangular constraint preconditioner. Numerical experiments show reliable and competitive performance for an optimal control problem in elasticity.}, language = {en} } @inproceedings{SteyerCheginiPotseetal.2023, author = {Steyer, Joshua and Chegini, Fatemeh and Potse, Mark and Loewe, Axel and Weiser, Martin}, title = {Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model}, volume = {50}, booktitle = {2023 Computing in Cardiology Conference (CinC)}, publisher = {Computing in Cardiology}, issn = {2325-887X}, doi = {10.22489/CinC.2023.385}, year = {2023}, abstract = {Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CV and how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular-membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the microscopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell.}, language = {en} } @inproceedings{CheginiFroehlyHuynhetal.2023, author = {Chegini, Fatemeh and Froehly, Algiane and Huynh, Ngoc Mai Monica and Pavarino, Luca and Potse, Mark and Scacchi, Simone and Weiser, Martin}, title = {Efficient numerical methods for simulating cardiac electrophysiology with cellular resolution}, booktitle = {10th Int. Conf. Computational Methods for Coupled Problems in Science and Engineering 2023}, doi = {10.23967/c.coupled.2023.004}, year = {2023}, abstract = {The cardiac extracellular-membrane-intracellular (EMI) model enables the precise geometrical representation and resolution of aggregates of individual myocytes. As a result, it not only yields more accurate simulations of cardiac excitation compared to homogenized models but also presents the challenge of solving much larger problems. In this paper, we introduce recent advancements in three key areas: (i) the creation of artificial, yet realistic grids, (ii) efficient higher-order time stepping achieved by combining low-overhead spatial adaptivity on the algebraic level with progressive spectral deferred correction methods, and (iii) substructuring domain decomposition preconditioners tailored to address the complexities of heterogeneous problem structures. The efficiency gains of these proposed methods are demonstrated through numerical results on cardiac meshes of different sizes.}, language = {en} } @inproceedings{SteyerCheginiStaryetal.2024, author = {Steyer, Joshua and Chegini, Fatemeh and Star{\´y}, Tomas and Potse, Mark and Weiser, Martin and Loewe, Axel}, title = {Electrograms in a Cardiac Cell-by-Cell Model}, booktitle = {Workshop Biosignals 2024}, doi = {10.47952/gro-publ-194}, year = {2024}, abstract = {Cardiac electrograms are an important tool to study the spread of excitation waves inside the heart, which in turn underlie muscle contraction. Electrograms can be used to analyse the dynamics of these waves, e.g. in fibrotic tissue. In computational models, these analyses can be done with greater detail than during minimally invasive in vivo procedures. Whilst homogenised models have been used to study electrogram genesis, such analyses have not yet been done in cellularly resolved models. Such high resolution may be required to develop a thorough understanding of the mechanisms behind abnormal excitation patterns leading to arrhythmias. In this study, we derived electrograms from an excitation propagation simulation in the Extracellular, Membrane, Intracellular (EMI) model, which represents these three domains explicitly in the mesh. We studied the effects of the microstructural excitation dynamics on electrogram genesis and morphology. We found that electrograms are sensitive to the myocyte alignment and connectivity, which translates into micro-fractionations in the electrograms.}, language = {en} } @inproceedings{WeiserChegini2022, author = {Weiser, Martin and Chegini, Fatemeh}, title = {Adaptive multirate integration of cardiac electrophysiology with spectral deferred correction methods}, booktitle = {CMBE22 - 7th International Conference on Computational \& Mathematical Biomedical Engineering}, pages = {528 -- 531}, year = {2022}, abstract = {The highly localized dynamics of cardiac electrophysiology models call for adaptive simulation methods. Unfortunately, the overhead incurred by classical mesh adaptivity turns out to outweigh the performance improvements achieved by reducing the problem size. Here, we explore a different approach to adaptivity based on algebraic degree of freedom subset selection during spectral deferred correction sweeps, which realizes a kind of multirate higher order integration. Numerical experience indicates a significant performance increase compared to uniform simulations.}, language = {en} } @article{BartelsFisikopoulosWeiser2023, author = {Bartels, Tinko and Fisikopoulos, Vissarion and Weiser, Martin}, title = {Fast Floating-Point Filters for Robust Predicates}, volume = {63}, journal = {BIT Numerical Mathematics}, arxiv = {http://arxiv.org/abs/2208.00497}, doi = {10.1007/s10543-023-00975-x}, year = {2023}, abstract = {Geometric predicates are at the core of many algorithms, such as the construction of Delaunay triangulations, mesh processing and spatial relation tests. These algorithms have applications in scientific computing, geographic information systems and computer-aided design. With floating-point arithmetic, these geometric predicates can incur round-off errors that may lead to incorrect results and inconsistencies, causing computations to fail. This issue has been addressed using a combination of exact arithmetic for robustness and floating-point filters to mitigate the computational cost of exact computations. The implementation of exact computations and floating-point filters can be a difficult task, and code generation tools have been proposed to address this. We present a new C++ meta-programming framework for the generation of fast, robust predicates for arbitrary geometric predicates based on polynomial expressions. We combine and extend different approaches to filtering, branch reduction, and overflow avoidance that have previously been proposed. We show examples of how this approach produces correct results for data sets that could lead to incorrect predicate results with naive implementations. Our benchmark results demonstrate that our implementation surpasses state-of-the-art implementations.}, language = {en} } @inproceedings{DhanakotiMaddocksWeiser2022, author = {Dhanakoti, Siva Prasad Chakri and Maddocks, John and Weiser, Martin}, title = {Navigation of Concentric Tube Continuum Robots using Optimal Control}, booktitle = {Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics}, doi = {10.5220/0011271000003271}, pages = {146 -- 154}, year = {2022}, abstract = {Recently developed Concentric Tube Continuum Robots (CTCRs) are widely exploited in, for example in minimally invasive surgeries which involve navigating inside narrow body cavities close to sensitive regions. These CTCRs can be controlled by extending and rotating the tubes in order to reach a target point or perform some task. The robot must deviate as little as possible from this narrow space and avoid damaging neighbouring tissue. We consider \emph{open-loop} optimal control of CTCRs parameterized over pseudo-time, primarily aiming at minimizing the robot's working volume during its motion. External loads acting on the system like tip loads or contact with tissues are not considered here. We also discussed the inclusion of tip's orientation in the optimal framework to perform some tasks. We recall a quaternion-based formulation of the robot configuration, discuss discretization, develop optimization objectives addressing different criteria, and investigate their impact on robot path planning for several numerical examples. This optimal framework can be applied to any backbone based continuum robots.}, language = {en} } @misc{BorndoerferDaneckerWeiser2023, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {Convergence Properties of Newton's Method for Globally Optimal Free Flight Trajectory Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91309}, year = {2023}, abstract = {The algorithmic efficiency of Newton-based methods for Free Flight Trajectory Optimization is heavily influenced by the size of the domain of convergence. We provide numerical evidence that the convergence radius is much larger in practice than what the theoretical worst case bounds suggest. The algorithm can be further improved by a convergence-enhancing domain decomposition.}, language = {en} } @misc{SagnolHegeWeiser2016, author = {Sagnol, Guillaume and Hege, Hans-Christian and Weiser, Martin}, title = {Using sparse kernels to design computer experiments with tunable precision}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-59605}, year = {2016}, abstract = {Statistical methods to design computer experiments usually rely on a Gaussian process (GP) surrogate model, and typically aim at selecting design points (combinations of algorithmic and model parameters) that minimize the average prediction variance, or maximize the prediction accuracy for the hyperparameters of the GP surrogate. In many applications, experiments have a tunable precision, in the sense that one software parameter controls the tradeoff between accuracy and computing time (e.g., mesh size in FEM simulations or number of Monte-Carlo samples). We formulate the problem of allocating a budget of computing time over a finite set of candidate points for the goals mentioned above. This is a continuous optimization problem, which is moreover convex whenever the tradeoff function accuracy vs. computing time is concave. On the other hand, using non-concave weight functions can help to identify sparse designs. In addition, using sparse kernel approximations drastically reduce the cost per iteration of the multiplicative weights updates that can be used to solve this problem.}, language = {en} } @article{BorndoerferDaneckerWeiser2021, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {A Discrete-Continuous Algorithm for Free Flight Planning}, volume = {14}, journal = {Algorithms}, number = {1}, publisher = {MDPI}, issn = {1438-0064}, doi = {10.3390/a14010004}, pages = {4}, year = {2021}, abstract = {We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.}, language = {en} }