@article{DeuflhardWeiserSeebass2000, author = {Deuflhard, Peter and Weiser, Martin and Seebass, Martin}, title = {A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning}, series = {Comput. Vis. Sci.}, volume = {3}, journal = {Comput. Vis. Sci.}, pages = {115 -- 120}, year = {2000}, language = {en} } @article{HammerschmidtWeiserSantiagoetal., author = {Hammerschmidt, Martin and Weiser, Martin and Santiago, Xavier Garcia and Zschiedrich, Lin and Bodermann, Bernd and Burger, Sven}, title = {Quantifying parameter uncertainties in optical scatterometry using Bayesian inversion}, series = {Proc. SPIE}, volume = {10330}, journal = {Proc. SPIE}, doi = {10.1117/12.2270596}, pages = {1033004}, language = {en} } @article{DeuflhardWeiserSeebass2000, author = {Deuflhard, Peter and Weiser, Martin and Seebaß, Martin}, title = {A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia}, series = {Comput. Visual. Sci.}, volume = {3}, journal = {Comput. Visual. Sci.}, doi = {10.1007/PL00013546}, pages = {1 -- 6}, year = {2000}, language = {en} } @article{HammerschmidtSchneiderSantiagoetal., author = {Hammerschmidt, Martin and Schneider, Philipp-Immanuel and Santiago, Xavier Garcia and Zschiedrich, Lin and Weiser, Martin and Burger, Sven}, title = {Solving inverse problems appearing in design and metrology of diffractive optical elements by using Bayesian optimization}, series = {Proc. SPIE}, volume = {10694}, journal = {Proc. SPIE}, doi = {10.1117/12.2315468}, pages = {1069407}, language = {en} } @article{SchenkWaechterWeiser2008, author = {Schenk, O. and W{\"a}chter, Andreas and Weiser, Martin}, title = {Inertia Revealing Preconditioning For Large-Scale Nonconvex Constrained Optimization}, series = {SIAM J. Sci. Comp.}, volume = {31}, journal = {SIAM J. Sci. Comp.}, number = {2}, pages = {939 -- 960}, year = {2008}, language = {en} } @article{WeiserDeuflhard2007, author = {Weiser, Martin and Deuflhard, Peter}, title = {Inexact central path following algorithms for optimal control problems}, series = {SIAM J. Control Opt.}, volume = {46}, journal = {SIAM J. Control Opt.}, number = {3}, pages = {792 -- 815}, year = {2007}, language = {en} } @article{SchielaWeiser2008, author = {Schiela, Anton and Weiser, Martin}, title = {Superlinear convergence of the Control Reduced Interior Point Method for PDE Constrained Optimization}, series = {Computational Optimization and Applications}, volume = {39}, journal = {Computational Optimization and Applications}, number = {3}, pages = {369 -- 393}, year = {2008}, language = {en} } @article{GaenzlerVolkweinWeiser2006, author = {G{\"a}nzler, Tobias and Volkwein, S. and Weiser, Martin}, title = {SQP methods for parameter identification problems arising in hyperthermia}, series = {Optim. Methods Softw.}, volume = {21}, journal = {Optim. Methods Softw.}, number = {6}, pages = {869 -- 887}, year = {2006}, language = {en} } @article{GriesseWeiser2008, author = {Griesse, Roland and Weiser, Martin}, title = {On the Interplay Between Interior Point Approximation and Parametric Sensitivities in Optimal Control}, series = {Journal of Mathematical Analysis and Applications}, journal = {Journal of Mathematical Analysis and Applications}, pages = {771 -- 793}, year = {2008}, language = {en} } @article{GellermannWeihrauchChoetal.2006, author = {Gellermann, Johanna and Weihrauch, Mirko and Cho, C. and Wlodarczyk, Waldemar and F{\"a}hling, Horst and Felix, Roland and Budach, Volker and Weiser, Martin and Nadobny, Johanna and Wust, Peter}, title = {Comparison of MR-thermography and planning calculations in phantoms}, series = {Medical Physics}, volume = {33}, journal = {Medical Physics}, pages = {3912 -- 3920}, year = {2006}, language = {en} } @article{DeuflhardWeiserZachow2006, author = {Deuflhard, Peter and Weiser, Martin and Zachow, Stefan}, title = {Mathematics in Facial Surgery}, series = {AMS Notices}, volume = {53}, journal = {AMS Notices}, number = {9}, pages = {1012 -- 1016}, year = {2006}, language = {en} } @article{PruefertTroeltzschWeiser2008, author = {Pr{\"u}fert, Uwe and Tr{\"o}ltzsch, Fredi and Weiser, Martin}, title = {The convergence of an interior point method for an elliptic control problem with mixed control-state constraints}, series = {Comput. Optim. Appl.}, volume = {39}, journal = {Comput. Optim. Appl.}, number = {2}, pages = {183 -- 218}, year = {2008}, language = {en} } @article{MoualeuNgangueWeiserEhrigetal., author = {Moualeu-Ngangue, Dany Pascal and Weiser, Martin and Ehrig, Rainald and Deuflhard, Peter}, title = {Optimal control for a tuberculosis model with undetected cases in Cameroon}, series = {Communications in Nonlinear Science and Numerical Simulation}, volume = {20}, journal = {Communications in Nonlinear Science and Numerical Simulation}, number = {3}, doi = {10.1016/j.cnsns.2014.06.037}, pages = {986 -- 1003}, abstract = {This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 \% in 10 years.}, language = {en} } @article{MoldenhauerWeiserZachow, author = {Moldenhauer, Marian and Weiser, Martin and Zachow, Stefan}, title = {Adaptive Algorithms for Optimal Hip Implant Positioning}, series = {PAMM}, volume = {17}, journal = {PAMM}, number = {1}, doi = {10.1002/pamm.201710071}, pages = {203 -- 204}, abstract = {In an aging society where the number of joint replacements rises, it is important to also increase the longevity of implants. In particular hip implants have a lifetime of at most 15 years. This derives primarily from pain due to implant migration, wear, inflammation, and dislocation, which is affected by the positioning of the implant during the surgery. Current joint replacement practice uses 2D software tools and relies on the experience of surgeons. Especially the 2D tools fail to take the patients' natural range of motion as well as stress distribution in the 3D joint induced by different daily motions into account. Optimizing the hip joint implant position for all possible parametrized motions under the constraint of a contact problem is prohibitively expensive as there are too many motions and every position change demands a recalculation of the contact problem. For the reduction of the computational effort, we use adaptive refinement on the parameter domain coupled with the interpolation method of Kriging. A coarse initial grid is to be locally refined using goal-oriented error estimation, reducing locally high variances. This approach will be combined with multi-grid optimization such that numerical errors are reduced.}, language = {en} } @article{FischerGoetschelWeiser, author = {Fischer, Lisa and G{\"o}tschel, Sebastian and Weiser, Martin}, title = {Lossy data compression reduces communication time in hybrid time-parallel integrators}, series = {Comput. Vis. Sci.}, volume = {19}, journal = {Comput. Vis. Sci.}, number = {1}, doi = {10.1007/s00791-018-0293-2}, pages = {19 -- 30}, abstract = {Parallel in time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel in time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet no sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups.}, language = {en} } @article{Weiser, author = {Weiser, Martin}, title = {Faster SDC convergence on non-equidistant grids by DIRK sweeps}, series = {BIT Numerical Mathematics}, volume = {55}, journal = {BIT Numerical Mathematics}, number = {4}, doi = {10.1007/s10543-014-0540-y}, pages = {1219 -- 1241}, abstract = {Spectral deferred correction methods for solving stiff ODEs are known to converge rapidly towards the collocation limit solution on equidistant grids, but show a much less favourable contraction on non-equidistant grids such as Radau-IIa points. We interprete SDC methods as fixed point iterations for the collocation system and propose new DIRK-type sweeps for stiff problems based on purely linear algebraic considerations. Good convergence is recovered also on non-equidistant grids. The properties of different variants are explored on a couple of numerical examples.}, language = {en} } @article{WeiserGoetschel, author = {Weiser, Martin and G{\"o}tschel, Sebastian}, title = {State Trajectory Compression for Optimal Control with Parabolic PDEs}, series = {SIAM J. Sci. Comput.}, volume = {34}, journal = {SIAM J. Sci. Comput.}, number = {1}, doi = {10.1137/11082172X}, pages = {A161 -- A184}, abstract = {In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and quasi-Newton methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy coding maintaining an error bound is sufficient.}, language = {en} } @article{WeiserRoelligArndtetal., author = {Weiser, Martin and R{\"o}llig, Mathias and Arndt, Ralf and Erdmann, Bodo}, title = {Development and test of a numerical model for pulse thermography in civil engineering}, series = {Heat and Mass Transfer}, volume = {46}, journal = {Heat and Mass Transfer}, number = {11-12}, pages = {1419 -- 1428}, abstract = {Pulse thermography of concrete structures is used in civil engineering for detecting voids, honeycombing and delamination. The physical situation is readily modeled by Fourier's law. Despite the simplicity of the PDE structure, quantitatively realistic numerical 3D simulation faces two major obstacles. First, the short heating pulse induces a thin boundary layer at the heated surface which encapsulates all information and therefore has to be resolved faithfully. Even with adaptive mesh refinement techniques, obtaining useful accuracies requires an unsatisfactorily fine discretization. Second, bulk material parameters and boundary conditions are barely known exactly. We address both issues by a semi-analytic reformulation of the heat transport problem and by parameter identification. Numerical results are compared with measurements of test specimens.}, language = {en} } @article{WilhelmsSeemannWeiseretal., author = {Wilhelms, Mathias and Seemann, Gunnar and Weiser, Martin and D{\"o}ssel, Olaf}, title = {Benchmarking Solvers of the Monodomain Equation in Cardiac Electrophysiological Modeling}, series = {Biomed. Engineer.}, volume = {55}, journal = {Biomed. Engineer.}, doi = {10.1515/BMT.2010.712}, pages = {99 -- 102}, language = {en} } @article{GoetschelWeiser, author = {G{\"o}tschel, Sebastian and Weiser, Martin}, title = {State Trajectory Compression in Optimal Control}, series = {PAMM}, volume = {10}, journal = {PAMM}, number = {1}, doi = {10.1002/pamm.201010282}, pages = {579 -- 580}, abstract = {In optimal control problems with nonlinear time-dependent 3D PDEs, the computation of the reduced gradient by adjoint methods requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. Since the state enters into the adjoint equation, the storage of a 4D discretization is necessary. We propose a lossy compression algorithm using a cheap predictor for the state data, with additional entropy coding of prediction errors. Analytical and numerical results indicate that compression factors around 30 can be obtained without exceeding the FE discretization error.}, language = {en} }