@incollection{ZachowWeiserHegeetal.2005, author = {Zachow, Stefan and Weiser, Martin and Hege, Hans-Christian and Deuflhard, Peter}, title = {Soft Tissue Prediction in Computer Assisted Maxillofacial Surgery Planning}, series = {Biomechanics Applied to Computer Assisted Surgery}, booktitle = {Biomechanics Applied to Computer Assisted Surgery}, editor = {Payan, Y.}, publisher = {Research Signpost}, pages = {277 -- 298}, year = {2005}, language = {en} } @incollection{ZachowWeiserDeuflhard2008, author = {Zachow, Stefan and Weiser, Martin and Deuflhard, Peter}, title = {Modellgest{\"u}tzte Operationsplanung in der Kopfchirurgie}, series = {Modellgest{\"u}tzte Therapie}, booktitle = {Modellgest{\"u}tzte Therapie}, editor = {Niederlag, Wolfgang and Lemke, Heinz and Meixensberger, J{\"u}rgen and Baumann, Michael}, publisher = {Health Academy}, pages = {140 -- 156}, year = {2008}, language = {en} } @article{WeiserZachowDeuflhard2010, author = {Weiser, Martin and Zachow, Stefan and Deuflhard, Peter}, title = {Craniofacial Surgery Planning Based on Virtual Patient Models}, series = {it - Information Technology}, volume = {52}, journal = {it - Information Technology}, number = {5}, publisher = {Oldenbourg Verlagsgruppe}, doi = {10.1524/itit.2010.0600}, pages = {258 -- 263}, year = {2010}, language = {en} } @misc{WeiserSchielaDeuflhard, author = {Weiser, Martin and Schiela, Anton and Deuflhard, Peter}, title = {Asymptotic Mesh Independence of Newton's Method Revisited}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7352}, number = {03-13}, abstract = {The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems.}, language = {en} } @article{WeiserSchielaDeuflhard2005, author = {Weiser, Martin and Schiela, Anton and Deuflhard, Peter}, title = {Asymptotic Mesh Independence of Newton's Method Revisited}, series = {SIAM J. Num. Anal.}, volume = {42}, journal = {SIAM J. Num. Anal.}, number = {5}, pages = {1830 -- 1845}, year = {2005}, language = {en} } @misc{WeiserErdmannDeuflhard, author = {Weiser, Martin and Erdmann, Bodo and Deuflhard, Peter}, title = {On Efficiency and Accuracy in Cardioelectric Simulation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10934}, number = {08-41}, abstract = {Reasons for the failure of adaptive methods to deliver improved efficiency when integrating monodomain models for myocardiac excitation are discussed. Two closely related techniques for reducing the computational complexity of linearly implicit integrators, deliberate sparsing and splitting, are investigated with respect to their impact on computing time and accuracy.}, language = {en} } @misc{WeiserErdmannDeuflhard, author = {Weiser, Martin and Erdmann, Bodo and Deuflhard, Peter}, title = {On Efficiency and Accuracy in Cardioelectric Simulation}, series = {Progress in Industrial Mathematics at ECMI 2008}, journal = {Progress in Industrial Mathematics at ECMI 2008}, editor = {Wilson, E. and Fitt, A. and Ockendon, H. and Norbury, J.}, publisher = {Springer}, pages = {371 -- 376}, abstract = {Reasons for the failure of adaptive methods to deliver improved efficiency when integrating monodomain models for myocardiac excitation are discussed. Two closely related techniques for reducing the computational complexity of linearly implicit integrators, deliberate sparsing and splitting, are investigated with respect to their impact on computing time and accuracy.}, language = {en} } @misc{WeiserDeuflhardErdmann, author = {Weiser, Martin and Deuflhard, Peter and Erdmann, Bodo}, title = {Affine conjugate adaptive Newton methods for nonlinear elastomechanics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7768}, number = {04-01}, abstract = {The paper extends affine conjugate Newton methods from convex to nonconvex minimization, with particular emphasis on PDE problems originating from compressible hyperelasticity. Based on well-known schemes from finite dimensional nonlinear optimization, three different algorithmic variants are worked out in a function space setting, which permits an adaptive multilevel finite element implementation. These algorithms are tested on two well-known 3D test problems and a real-life example from surgical operation planning.}, language = {en} } @article{WeiserDeuflhardErdmann2007, author = {Weiser, Martin and Deuflhard, Peter and Erdmann, Bodo}, title = {Affine conjugate adaptive Newton methods for nonlinear elastomechanics}, series = {Opt. Meth. Softw.}, volume = {22}, journal = {Opt. Meth. Softw.}, number = {3}, pages = {413 -- 431}, year = {2007}, language = {en} } @misc{WeiserDeuflhard, author = {Weiser, Martin and Deuflhard, Peter}, title = {The Central Path towards the Numerical Solution of Optimal Control Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6380}, number = {01-12}, abstract = {A new approach to the numerical solution of optimal control problems including control and state constraints is presented. Like hybrid methods, the approach aims at combining the advantages of direct and indirect methods. Unlike hybrid methods, however, our method is directly based on interior-point concepts in function space --- realized via an adaptive multilevel scheme applied to the complementarity formulation and numerical continuation along the central path. Existence of the central path and its continuation towards the solution point is analyzed in some theoretical detail. An adaptive stepsize control with respect to the duality gap parameter is worked out in the framework of affine invariant inexact Newton methods. Finally, the performance of a first version of our new type of algorithm is documented by the successful treatment of the well-known intricate windshear problem.}, language = {en} } @article{WeiserDeuflhard2007, author = {Weiser, Martin and Deuflhard, Peter}, title = {Inexact central path following algorithms for optimal control problems}, series = {SIAM J. Control Opt.}, volume = {46}, journal = {SIAM J. Control Opt.}, number = {3}, pages = {792 -- 815}, year = {2007}, language = {en} } @article{MoualeuNgangueWeiserEhrigetal., author = {Moualeu-Ngangue, Dany Pascal and Weiser, Martin and Ehrig, Rainald and Deuflhard, Peter}, title = {Optimal control for a tuberculosis model with undetected cases in Cameroon}, series = {Communications in Nonlinear Science and Numerical Simulation}, volume = {20}, journal = {Communications in Nonlinear Science and Numerical Simulation}, number = {3}, doi = {10.1016/j.cnsns.2014.06.037}, pages = {986 -- 1003}, abstract = {This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 \% in 10 years.}, language = {en} } @misc{MoualeuNgangueWeiserEhrigetal., author = {Moualeu-Ngangue, Dany Pascal and Weiser, Martin and Ehrig, Rainald and Deuflhard, Peter}, title = {Optimal control for a tuberculosis model with undetected cases in Cameroon}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43142}, abstract = {This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 \% in 10 years}, language = {en} } @article{DeuflhardWeiserZachow2006, author = {Deuflhard, Peter and Weiser, Martin and Zachow, Stefan}, title = {Mathematics in Facial Surgery}, series = {AMS Notices}, volume = {53}, journal = {AMS Notices}, number = {9}, pages = {1012 -- 1016}, year = {2006}, language = {en} } @article{DeuflhardWeiserSeebass2000, author = {Deuflhard, Peter and Weiser, Martin and Seebaß, Martin}, title = {A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia}, series = {Comput. Visual. Sci.}, volume = {3}, journal = {Comput. Visual. Sci.}, doi = {10.1007/PL00013546}, pages = {1 -- 6}, year = {2000}, language = {en} } @misc{DeuflhardWeiserSeebass, author = {Deuflhard, Peter and Weiser, Martin and Seebass, Martin}, title = {A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3785}, number = {SC-98-35}, abstract = {In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE.}, language = {en} } @article{DeuflhardWeiserSeebass2000, author = {Deuflhard, Peter and Weiser, Martin and Seebass, Martin}, title = {A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning}, series = {Comput. Vis. Sci.}, volume = {3}, journal = {Comput. Vis. Sci.}, pages = {115 -- 120}, year = {2000}, language = {en} } @misc{DeuflhardWeiser, author = {Deuflhard, Peter and Weiser, Martin}, title = {Local Inexact Newton Multilevel FEM for Nonlinear Elliptic Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2401}, number = {SC-96-29}, abstract = {The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavior for this class of problems. First, an affine conjugate Newton--Mysovskikh type theorem on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can be easily extended to inexact Newton methods, where the inner iteration is only approximately solved. For fixed finite dimension, a special implementation of a Newton--PCG algorithm is worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic convergence of the outer iteration. In infinite dimensional problems, the PCG method may be just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead of the algebraic inner iteration errors we now have to control the FE discretization errors, which is a standard task performed within any adaptive multilevel method. A careful study of the information gain per computational effort leads to the result that the quadratic convergence mode of the Newton--Galerkin algorithm is the best mode for the fixed dimensional case, whereas for an adaptive variable dimensional code a special linear convergence mode of the algorithm is definitely preferable. The theoretical results are then illustrated by numerical experiments with a {\sf NEWTON--KASKADE} algorithm.}, language = {en} } @misc{DeuflhardWeiser, author = {Deuflhard, Peter and Weiser, Martin}, title = {Global Inexact Multilevel FEM for Nonlinear Elliptic Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2430}, number = {SC-96-33}, abstract = {The paper deals with the multilevel solution of {\em elliptic} partial differential equations (PDEs) in a {\em finite element} setting: {\em uniform ellipticity} of the PDE then goes with {\em strict monotonicity} of the derivative of a nonlinear convex functional. A {\em Newton multigrid method} is advocated, wherein {\em linear residuals} are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some {\em damping} of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An {\em affine conjugate} global convergence theory is given, which covers both the {\em exact} Newton method (neglecting the occurrence of approximation errors) and {\em inexact} Newton--Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a~{\sf NEWTON--KASKADE} code are documented.}, language = {en} } @inproceedings{DeuflhardWeiser1998, author = {Deuflhard, Peter and Weiser, Martin}, title = {Global inexact Newton multilevel FEM for nonlinear elliptic problems}, series = {Multigrid methods V. proceedings of the 5th European multigrid conference, held in Stuttgart, Germany, October 1-4, 1996.}, volume = {3}, booktitle = {Multigrid methods V. proceedings of the 5th European multigrid conference, held in Stuttgart, Germany, October 1-4, 1996.}, editor = {et al. Hackbusch, Wolfgang}, publisher = {Berlin: Springer}, pages = {71 -- 89}, year = {1998}, language = {en} }