@article{AlhaddadFoerstnerGrothetal.2022, author = {Alhaddad, Samer and F{\"o}rstner, Jens and Groth, Stefan and Gr{\"u}newald, Daniel and Grynko, Yevgen and Hannig, Frank and Kenter, Tobias and Pfreundt, F.J. and Plessl, Christian and Schotte, Merlind and Steinke, Thomas and Teich, J. and Weiser, Martin and Wende, Florian}, title = {The HighPerMeshes Framework for Numerical Algorithms on Unstructured Grids}, volume = {34}, journal = {Concurrency and Computation: Practice and Experience}, number = {14}, doi = {10.1002/cpe.6616}, year = {2022}, abstract = {Solving PDEs on unstructured grids is a cornerstone of engineering and scientific computing. Heterogeneous parallel platforms, including CPUs, GPUs, and FPGAs, enable energy-efficient and computationally demanding simulations. In this article, we introduce the HPM C++-embedded DSL that bridges the abstraction gap between the mathematical formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different programming models on the other hand. Thus, the HPM DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HPM DSL, and demonstrate its usage with three examples. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. A code generator and a matching back end allow the acceleration of HPM code with GPUs. Finally, the achievable performance and scalability are demonstrated for different example problems.}, language = {en} } @article{AlhaddadFoerstnerGrothetal.2021, author = {Alhaddad, Samer and F{\"o}rstner, Jens and Groth, Stefan and Gr{\"u}newald, Daniel and Grynko, Yevgen and Hannig, Frank and Kenter, Tobias and Pfreundt, Franz-Josef and Plessl, Christian and Schotte, Merlind and Steinke, Thomas and Teich, J{\"u}rgen and Weiser, Martin and Wende, Florian}, title = {HighPerMeshes - A Domain-Specific Language for Numerical Algorithms on Unstructured Grids}, journal = {Euro-Par 2020: Parallel Processing Workshops.}, publisher = {Springer}, doi = {10.1007/978-3-030-71593-9_15}, pages = {185 -- 196}, year = {2021}, abstract = {Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPer-Meshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell's equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster.}, language = {en} } @article{AndresArconesWeiserKoutsourelakisetal.2023, author = {Andr{\´e}s Arcones, Daniel and Weiser, Martin and Koutsourelakis, Faidon-Stelios and Unger, J{\"o}rg F.}, title = {A Bayesian Framework for Simulation-based Digital Twins of Bridges}, volume = {6}, journal = {EUROSTRUCT 2023:European Association on Quality Control of Bridges and Structures: Digital Transformation in Sustainability}, number = {5}, doi = {10.1002/cepa.2177}, pages = {734 -- 740}, year = {2023}, abstract = {Simulation-based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation-based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up-to-date representation of bridge behavior, helping to inform decision-making for maintenance and management.}, language = {en} } @inproceedings{AndresArconesWeiserKoutsourelakisetal.2023, author = {Andr{\´e}s Arcones, Daniel and Weiser, Martin and Koutsourelakis, Faidon-Stelios and Unger, J{\"o}rg F.}, title = {Evaluation of Model Bias Identification Approaches Based on Bayesian Inference and Applications to Digital Twins}, booktitle = {5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering}, pages = {1 -- 15}, year = {2023}, abstract = {In recent years, the use of simulation-based digital twins for monitoring and assessment of complex mechanical systems has greatly expanded. Their potential to increase the information obtained from limited data makes them an invaluable tool for a broad range of real-world applications. Nonetheless, there usually exists a discrepancy between the predicted response and the measurements of the system once built. One of the main contributors to this difference in addition to miscalibrated model parameters is the model error. Quantifying this socalled model bias (as well as proper values for the model parameters) is critical for the reliable performance of digital twins. Model bias identification is ultimately an inverse problem where information from measurements is used to update the original model. Bayesian formulations can tackle this task. Including the model bias as a parameter to be inferred enables the use of a Bayesian framework to obtain a probability distribution that represents the uncertainty between the measurements and the model. Simultaneously, this procedure can be combined with a classic parameter updating scheme to account for the trainable parameters in the original model. This study evaluates the effectiveness of different model bias identification approaches based on Bayesian inference methods. This includes more classical approaches such as direct parameter estimation using MCMC in a Bayesian setup, as well as more recent proposals such as stat-FEM or orthogonal Gaussian Processes. Their potential use in digital twins, generalization capabilities, and computational cost is extensively analyzed.}, language = {en} } @article{AndresArconesWeiserKoutsourelakisetal.2024, author = {Andr{\´e}s Arcones, Daniel and Weiser, Martin and Koutsourelakis, Faidon-Stelios and Unger, J{\"o}rg F.}, title = {Model bias identification for Bayesian calibration of stochastic digital twins of bridges}, volume = {41}, journal = {Applied Stochastic Models in Business and Industry}, number = {3}, doi = {10.1002/asmb.2897}, year = {2024}, abstract = {Simulation-based digital twins must provide accurate, robust and reliable digital representations of their physical counterparts. Quantifying the uncertainty in their predictions plays, therefore, a key role in making better-informed decisions that impact the actual system. The update of the simulation model based on data must be then carefully implemented. When applied to complex standing structures such as bridges, discrepancies between the computational model and the real system appear as model bias, which hinders the trustworthiness of the digital twin and increases its uncertainty. Classical Bayesian updating approaches aiming to infer the model parameters often fail at compensating for such model bias, leading to overconfident and unreliable predictions. In this paper, two alternative model bias identification approaches are evaluated in the context of their applicability to digital twins of bridges. A modularized version of Kennedy and O'Hagan's approach and another one based on Orthogonal Gaussian Processes are compared with the classical Bayesian inference framework in a set of representative benchmarks. Additionally, two novel extensions are proposed for such models: the inclusion of noise-aware kernels and the introduction of additional variables not present in the computational model through the bias term. The integration of such approaches in the digital twin corrects the predictions, quantifies their uncertainty, estimates noise from unknown physical sources of error and provides further insight into the system by including additional pre-existing information without modifying the computational model.}, language = {en} } @article{AndresArconesWeiserKoutsourelakisetal.2024, author = {Andr{\´e}s Arcones, Daniel and Weiser, Martin and Koutsourelakis, Phaedon-Stelios and Unger, J{\"o}rg F.}, title = {Bias Identification Approaches for Model Updating of Simulation-based Digital Twins of Bridges}, volume = {2}, journal = {Structural Health Monitoring in the Light of Climate Impact and Data Science. Research and Review Journal of Nondestructive Testing}, number = {2}, doi = {10.58286/30524}, year = {2024}, abstract = {Simulation-based digital twins of bridges have the potential not only to serve as monitoring devices of the current state of the structure but also to generate new knowledge through physical predictions that allow for better-informed decisionmaking. For an accurate representation of the bridge, the underlying models must be tuned to reproduce the real system. Nevertheless, the necessary assumptions and simplifications in these models irremediably introduce discrepancies between measurements and model response. We will show that quantifying the extent of the uncertainties introduced through the models that lead to such discrepancies provides a better understanding of the real system, enhances the model updating process, and creates more robust and trustworthy digital twins. The inclusion of an explicit bias term will be applied to a representative demonstrator case based on the thermal response of the Nibelungenbr{\"u}cke of Worms. The findings from this work are englobed in the initiative SPP 100+, whose main aim is the extension of the service life of structures, especially through the implementation of digital twins.}, language = {en} } @article{AndresArconesWeiserKoutsourelakisetal.2025, author = {Andr{\´e}s Arcones, Daniel and Weiser, Martin and Koutsourelakis, Phaedon-Stelios and Unger, J{\"o}rg F.}, title = {Embedded Model Form Uncertainty Quantification with Measurement Noise for Bayesian Model Calibration}, arxiv = {http://arxiv.org/abs/2410.12037}, year = {2025}, abstract = {A key factor in ensuring the accuracy of computer simulations that model physical systems is the proper calibration of their parameters based on real-world observations or experimental data. Inevitably, uncertainties arise, and Bayesian methods provide a robust framework for quantifying and propagating these uncertainties to model predictions. Nevertheless, Bayesian methods paired with inexact models usually produce predictions unable to represent the observed datapoints. Additionally, the quantified uncertainties of these overconfident models cannot be propagated to other Quantities of Interest (QoIs) reliably. A promising solution involves embedding a model inadequacy term in the inference parameters, allowing the quantified model form uncertainty to influence non-observed QoIs. This paper introduces a more interpretable framework for embedding the model inadequacy compared to existing methods. To overcome the limitations of current approaches, we adapt the existing likelihood models to properly account for noise in the measurements and propose two new formulations designed to address their shortcomings. Moreover, we evaluate the performance of this inadequacy-embedding approach in the presence of discrepancies between measurements and model predictions, including noise and outliers. Particular attention is given to how the uncertainty associated with the model inadequacy term propagates to the QoIs, enabling a more comprehensive statistical analysis of prediction's reliability. Finally, the proposed approach is applied to estimate the uncertainty in the predicted heat flux from a transient thermal simulation using temperature bservations.}, language = {en} } @article{BartelsFisikopoulosWeiser2023, author = {Bartels, Tinko and Fisikopoulos, Vissarion and Weiser, Martin}, title = {Fast Floating-Point Filters for Robust Predicates}, volume = {63}, journal = {BIT Numerical Mathematics}, arxiv = {http://arxiv.org/abs/2208.00497}, doi = {10.1007/s10543-023-00975-x}, year = {2023}, abstract = {Geometric predicates are at the core of many algorithms, such as the construction of Delaunay triangulations, mesh processing and spatial relation tests. These algorithms have applications in scientific computing, geographic information systems and computer-aided design. With floating-point arithmetic, these geometric predicates can incur round-off errors that may lead to incorrect results and inconsistencies, causing computations to fail. This issue has been addressed using a combination of exact arithmetic for robustness and floating-point filters to mitigate the computational cost of exact computations. The implementation of exact computations and floating-point filters can be a difficult task, and code generation tools have been proposed to address this. We present a new C++ meta-programming framework for the generation of fast, robust predicates for arbitrary geometric predicates based on polynomial expressions. We combine and extend different approaches to filtering, branch reduction, and overflow avoidance that have previously been proposed. We show examples of how this approach produces correct results for data sets that could lead to incorrect predicate results with naive implementations. Our benchmark results demonstrate that our implementation surpasses state-of-the-art implementations.}, language = {en} } @misc{BaumannDudaSchielaetal.2026, author = {Baumann, Felix and Duda, Georg and Schiela, Anton and Weiser, Martin}, title = {Identification of Stress in Heterogeneous Contact Models}, journal = {Non-Smooth and Complementarity-Based Distributed Parameter Systems}, editor = {Hinterm{\"u}ller, Michael}, publisher = {Springer Nature}, year = {2026}, abstract = {We develop a heterogeneous model of the lower limb system to simulate muscle forces and stresses acting on the knee joint. The modelling of the bone dynamics leads to an index-3 DAE, which we discretize by higher order collocation methods. Furthermore, we present an elastomechanical contact knee joint model of the articular cartilage. For the solution of the contact problem we develop an efficient multigrid solver, based on an Augmented-Lagrangian relaxation of the contact constraints. We formulate the identification of joint forces and resulting stresses with respect to different knee joint models as an inverse problem based on medical gait data.}, language = {en} } @article{BecksLippoldWinkleretal.2024, author = {Becks, Henrik and Lippold, Lukas and Winkler, Paul and Rohrer, Maximilian and Leusmann, Thorsten and Anton, David and Sprenger, Bjarne and K{\"a}hler, Philipp and Rudenko, Iryna and Andr{\´e}s Arcones, Daniel and Koutsourelakis, Phaedon-Stelios and Unger, J{\"o}rg F. and Weiser, Martin and Petryna, Yuri and Schnellenbach-Held, Martina and Lowke, Dirk and Wessels, Henning and Lenzen, Armin and Zabel, Volkmar and K{\"o}nke, Carsten and Claßen, Martin and Hegger, Josef}, title = {Neuartige Konzepte f{\"u}r die Zustands{\"u}berwachung und -analyse von Br{\"u}ckenbauwerken - Einblicke in das Forschungsvorhaben SPP100+}, volume = {99}, journal = {Bauingenieur}, number = {10}, doi = {10.37544/0005-6650-2024-10-63}, pages = {327 -- 338}, year = {2024}, abstract = {Die Br{\"u}ckeninfrastruktur in Deutschland und Europa steht aufgrund steigender Verkehrslasten und alternder Bauwerke vor erheblichen Herausforderungen. Das DFG-Schwerpunktprogramm 2388 „Hundert plus - Verl{\"a}ngerung der Lebensdauer komplexer Baustrukturen durch intelligente Digitalisierung" (SPP100+) strebt an, durch digitale Innovationen und pr{\"a}diktive Instandhaltungsstrategien die Nutzungsdauer bestehender Br{\"u}ckenbauwerke zu verl{\"a}ngern. Der vorliegende Beitrag fokussiert sich auf das SPP100+ zugeh{\"o}rige Cluster „Monitoring und Simulation", das sieben Teilprojekte umfasst. Die Projekte entwickeln fortschrittliche Methoden zur {\"U}berwachung und Zustandsbewertung von Br{\"u}cken mittels Digitaler Zwillinge, hochaufl{\"o}sender Sensortechnik und numerischer Simulationen. Innovative Ans{\"a}tze wie nichtlineare Modellanpassungen, stochastische Methoden und k{\"u}nstliche Intelligenz erm{\"o}glichen eine pr{\"a}zise und fr{\"u}hzeitige Identifizierung potenzieller Sch{\"a}den. Die Kombination aus kontinuierlichem Bauwerksmonitoring und effizienter Datenauswertung ist entscheidend f{\"u}r die langfristige Sicherheit und Langlebigkeit bestehender Br{\"u}cken und tr{\"a}gt dar{\"u}ber hinaus zur Ressourcenschonung bei.}, language = {de} }