@misc{Weiser2003, author = {Weiser, Martin}, title = {Interior Point Methods in Function Space}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7578}, number = {03-35}, year = {2003}, abstract = {A primal-dual interior point method for optimal control problems is considered. The algorithm is directly applied to the infinite dimensional problem. Existence and convergence of the central path are analyzed, and linear convergence of a short step pathfollowing method is established.}, language = {en} } @misc{SchielaWeiser2005, author = {Schiela, Anton and Weiser, Martin}, title = {Superlinear Convergence of the Control Reduced Interior Point Method for PDE Constrained Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8490}, number = {05-15}, year = {2005}, abstract = {A thorough convergence analysis of the Control Reduced Interior Point Method in function space is performed. This recently proposed method is a primal interior point pathfollowing scheme with the special feature, that the control variable is eliminated from the optimality system. Apart from global linear convergence we show, that this method converges locally almost quadratically, if the optimal solution satisfies a function space analogue to a non-degeneracy condition. In numerical experiments we observe, that a prototype implementation of our method behaves in compliance with our theoretical results.}, language = {en} } @misc{WeiserSchiela2004, author = {Weiser, Martin and Schiela, Anton}, title = {Function space interior point methods for PDE constrained optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8027}, number = {04-27}, year = {2004}, abstract = {A primal-dual interior point method for optimal control problems with PDE constraints is considered. The algorithm is directly applied to the infinite dimensional problem. Existence and convergence of the central path are analyzed. Numerical results from an inexact continuation method applied to a model problem are shown.}, language = {en} } @misc{WeiserDeuflhard2001, author = {Weiser, Martin and Deuflhard, Peter}, title = {The Central Path towards the Numerical Solution of Optimal Control Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6380}, number = {01-12}, year = {2001}, abstract = {A new approach to the numerical solution of optimal control problems including control and state constraints is presented. Like hybrid methods, the approach aims at combining the advantages of direct and indirect methods. Unlike hybrid methods, however, our method is directly based on interior-point concepts in function space --- realized via an adaptive multilevel scheme applied to the complementarity formulation and numerical continuation along the central path. Existence of the central path and its continuation towards the solution point is analyzed in some theoretical detail. An adaptive stepsize control with respect to the duality gap parameter is worked out in the framework of affine invariant inexact Newton methods. Finally, the performance of a first version of our new type of algorithm is documented by the successful treatment of the well-known intricate windshear problem.}, language = {en} } @misc{GriesseWeiser2005, author = {Griesse, Roland and Weiser, Martin}, title = {On the Interplay Between Interior Point Approximation and Parametric Sensitivities in Optimal Control}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8773}, number = {05-44}, year = {2005}, abstract = {This paper is concerned with the sensitivities of function space oriented interior point approximations in parameter dependent problems. For an abstract setting that covers control constrained optimal control problems, the convergence of interior point sensitivities to the sensitivities of the optimal solution is shown. Error bounds for \$L_q\$ norms are derived and illustrated with numerical examples.}, language = {en} } @misc{BorndoerferDaneckerWeiser2023, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {Convergence Properties of Newton's Method for Globally Optimal Free Flight Trajectory Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91309}, year = {2023}, abstract = {The algorithmic efficiency of Newton-based methods for Free Flight Trajectory Optimization is heavily influenced by the size of the domain of convergence. We provide numerical evidence that the convergence radius is much larger in practice than what the theoretical worst case bounds suggest. The algorithm can be further improved by a convergence-enhancing domain decomposition.}, language = {en} } @article{BorndoerferDaneckerWeiser2021, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {A Discrete-Continuous Algorithm for Free Flight Planning}, volume = {14}, journal = {Algorithms}, number = {1}, publisher = {MDPI}, issn = {1438-0064}, doi = {10.3390/a14010004}, pages = {4}, year = {2021}, abstract = {We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.}, language = {en} } @misc{BorndoerferDaneckerWeiser2020, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {A Discrete-Continuous Algorithm for Free Flight Planning}, issn = {1438-0064}, doi = {10.3390/a14010004}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81343}, year = {2020}, abstract = {We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.}, language = {en} }