@misc{WeiserGhosh, author = {Weiser, Martin and Ghosh, Sunayana}, title = {Theoretically optimal inexact SDC methods}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53140}, abstract = {In several inital value problems with particularly expensive right hand side computation, there is a trade-off between accuracy and computational effort in evaluating the right hand sides. We consider inexact spectral deferred correction (SDC) methods for solving such non-stiff initial value problems. SDC methods are interpreted as fixed point iterations and, due to their corrective iterative nature, allow to exploit the accuracy-work-tradeoff for a reduction of the total computational effort. On one hand we derive an error model bounding the total error in terms of the right hand side evaluation errors. On the other hand, we define work models describing the computational effort in terms of the evaluation accuracy. Combining both, a theoretically optimal tolerance selection is worked out by minimizing the total work subject to achieving the requested tolerance.}, language = {en} } @misc{LubkollSchielaWeiser, author = {Lubkoll, Lars and Schiela, Anton and Weiser, Martin}, title = {An affine covariant composite step method for optimization with PDEs as equality constraints}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53954}, abstract = {We propose a composite step method, designed for equality constrained optimization with partial differential equations. Focus is laid on the construction of a globalization scheme, which is based on cubic regularization of the objective and an affine covariant damped Newton method for feasibility. We show finite termination of the inner loop and fast local convergence of the algorithm. We discuss preconditioning strategies for the iterative solution of the arising linear systems with projected conjugate gradient. Numerical results are shown for optimal control problems subject to a nonlinear heat equation and subject to nonlinear elastic equations arising from an implant design problem in craniofacial surgery.}, language = {en} } @misc{WeiserScacchi, author = {Weiser, Martin and Scacchi, Simone}, title = {Spectral Deferred Correction methods for adaptive electro-mechanical coupling in cardiac simulation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-50695}, abstract = {We investigate spectral deferred correction (SDC) methods for time stepping and their interplay with spatio-temporal adaptivity, applied to the solution of the cardiac electro-mechanical coupling model. This model consists of the Monodomain equations, a reaction-diffusion system modeling the cardiac bioelectrical activity, coupled with a quasi-static mechanical model describing the contraction and relaxation of the cardiac muscle. The numerical approximation of the cardiac electro-mechanical coupling is a challenging multiphysics problem, because it exhibits very different spatial and temporal scales. Therefore, spatio-temporal adaptivity is a promising approach to reduce the computational complexity. SDC methods are simple iterative methods for solving collocation systems. We exploit their flexibility for combining them in various ways with spatio-temporal adaptivity. The accuracy and computational complexity of the resulting methods are studied on some numerical examples.}, language = {en} } @misc{GoetschelvonTycowiczPolthieretal., author = {G{\"o}tschel, Sebastian and von Tycowicz, Christoph and Polthier, Konrad and Weiser, Martin}, title = {Reducing Memory Requirements in Scientific Computing and Optimal Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42695}, abstract = {In high accuracy numerical simulations and optimal control of time-dependent processes, often both many time steps and fine spatial discretizations are needed. Adjoint gradient computation, or post-processing of simulation results, requires the storage of the solution trajectories over the whole time, if necessary together with the adaptively refined spatial grids. In this paper we discuss various techniques to reduce the memory requirements, focusing first on the storage of the solution data, which typically are double precision floating point values. We highlight advantages and disadvantages of the different approaches. Moreover, we present an algorithm for the efficient storage of adaptively refined, hierarchic grids, and the integration with the compressed storage of solution data.}, language = {en} } @misc{GoetschelNagaiahKunischetal., author = {G{\"o}tschel, Sebastian and Nagaiah, Chamakuri and Kunisch, Karl and Weiser, Martin}, title = {Lossy Compression in Optimal Control of Cardiac Defibrillation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18566}, abstract = {This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples.}, language = {en} } @misc{GoetschelWeiser, author = {G{\"o}tschel, Sebastian and Weiser, Martin}, title = {Lossy Compression for PDE-constrained Optimization: Adaptive Error Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18575}, abstract = {For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the ad-joint equation. The state enters into the adjoint equation, requiring the storage of a full 4D data set. If Newton-CG methods are used, two additional trajectories have to be stored. To get numerical results which are accurate enough, in many case very fine discretizations in time and space are necessary, which leads to a significant amount of data to be stored and transmitted to mass storage. Lossy compression methods were developed to overcome the storage problem by reducing the accuracy of the stored trajectories. The inexact data induces errors in the reduced gradient and reduced Hessian. In this paper, we analyze the influence of such a lossy trajectory compression method on Newton-CG methods for optimal control of parabolic PDEs and design an adaptive strategy for choosing appropriate quantization tolerances.}, language = {en} } @misc{Weiser, author = {Weiser, Martin}, title = {Faster SDC convergence on non-equidistant grids by DIRK sweeps}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18662}, abstract = {Spectral deferred correction methods for solving stiff ODEs are known to converge rapidly towards the collocation limit solution on equidistant grids, but show a much less favourable contraction on non-equidistant grids such as Radau-IIa points. We interprete SDC methods as fixed point iterations for the collocation system and propose new DIRK-type sweeps for stiff problems based on purely linear algebraic considerations. Good convergence is recovered also on non-equidistant grids. The properties of different variants are explored on a couple of numerical examples.}, language = {en} } @misc{MoualeuNgangueWeiserEhrigetal., author = {Moualeu-Ngangue, Dany Pascal and Weiser, Martin and Ehrig, Rainald and Deuflhard, Peter}, title = {Optimal control for a tuberculosis model with undetected cases in Cameroon}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43142}, abstract = {This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80 \% in 10 years}, language = {en} } @misc{GoetschelWeiserMaierhoferetal., author = {G{\"o}tschel, Sebastian and Weiser, Martin and Maierhofer, Christiane and Richter, Regina}, title = {Data Enhancement for Active Thermography}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15243}, abstract = {Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise.}, language = {en} } @misc{LubkollSchielaWeiser, author = {Lubkoll, Lars and Schiela, Anton and Weiser, Martin}, title = {An optimal control problem in polyconvex hyperelasticity}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14745}, number = {12-08}, abstract = {We consider a shape implant design problem that arises in the context of facial surgery. We introduce a reformulation as an optimal control problem, where the control acts as a boundary force. The state is modelled as a minimizer of a polyconvex hyperelastic energy functional. We show existence of optimal solutions and derive - on a formal level - first order optimality conditions. Finally, preliminary numerical results are presented.}, language = {en} }