@misc{PruefertTroeltzschWeiser, author = {Pr{\"u}fert, Uwe and Tr{\"o}ltzsch, Fredi and Weiser, Martin}, title = {The convergence of an interior point method for an elliptic control problem with mixed control-state constraints}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8223}, number = {04-47}, abstract = {The paper addresses primal interior point method for state constrained PDE optimal control problems. By a Lavrentiev regularization, the state constraint is transformed to a mixed control-state constraint with bounded Lagrange multiplier. Existence and convergence of the central path are established, and linear convergence of a short-step pathfollowing method is shown. The behaviour of the regularizations are demonstrated by numerical examples.}, language = {en} } @misc{SchielaWeiser, author = {Schiela, Anton and Weiser, Martin}, title = {Superlinear Convergence of the Control Reduced Interior Point Method for PDE Constrained Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8490}, number = {05-15}, abstract = {A thorough convergence analysis of the Control Reduced Interior Point Method in function space is performed. This recently proposed method is a primal interior point pathfollowing scheme with the special feature, that the control variable is eliminated from the optimality system. Apart from global linear convergence we show, that this method converges locally almost quadratically, if the optimal solution satisfies a function space analogue to a non-degeneracy condition. In numerical experiments we observe, that a prototype implementation of our method behaves in compliance with our theoretical results.}, language = {en} } @misc{GriesseWeiser, author = {Griesse, Roland and Weiser, Martin}, title = {On the Interplay Between Interior Point Approximation and Parametric Sensitivities in Optimal Control}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8773}, number = {05-44}, abstract = {This paper is concerned with the sensitivities of function space oriented interior point approximations in parameter dependent problems. For an abstract setting that covers control constrained optimal control problems, the convergence of interior point sensitivities to the sensitivities of the optimal solution is shown. Error bounds for \$L_q\$ norms are derived and illustrated with numerical examples.}, language = {en} } @misc{DeuflhardWeiser, author = {Deuflhard, Peter and Weiser, Martin}, title = {Local Inexact Newton Multilevel FEM for Nonlinear Elliptic Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2401}, number = {SC-96-29}, abstract = {The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavior for this class of problems. First, an affine conjugate Newton--Mysovskikh type theorem on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can be easily extended to inexact Newton methods, where the inner iteration is only approximately solved. For fixed finite dimension, a special implementation of a Newton--PCG algorithm is worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic convergence of the outer iteration. In infinite dimensional problems, the PCG method may be just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead of the algebraic inner iteration errors we now have to control the FE discretization errors, which is a standard task performed within any adaptive multilevel method. A careful study of the information gain per computational effort leads to the result that the quadratic convergence mode of the Newton--Galerkin algorithm is the best mode for the fixed dimensional case, whereas for an adaptive variable dimensional code a special linear convergence mode of the algorithm is definitely preferable. The theoretical results are then illustrated by numerical experiments with a {\sf NEWTON--KASKADE} algorithm.}, language = {en} } @misc{DeuflhardWeiser, author = {Deuflhard, Peter and Weiser, Martin}, title = {Global Inexact Multilevel FEM for Nonlinear Elliptic Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2430}, number = {SC-96-33}, abstract = {The paper deals with the multilevel solution of {\em elliptic} partial differential equations (PDEs) in a {\em finite element} setting: {\em uniform ellipticity} of the PDE then goes with {\em strict monotonicity} of the derivative of a nonlinear convex functional. A {\em Newton multigrid method} is advocated, wherein {\em linear residuals} are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some {\em damping} of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An {\em affine conjugate} global convergence theory is given, which covers both the {\em exact} Newton method (neglecting the occurrence of approximation errors) and {\em inexact} Newton--Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a~{\sf NEWTON--KASKADE} code are documented.}, language = {en} } @misc{HorenkoWeiser, author = {Horenko, Illia and Weiser, Martin}, title = {Adaptive Integration of Multidimensional Molecular Dynamics with Quantum Initial Conditions}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6967}, number = {02-29}, abstract = {The paper presents a particle method framework for resolving molecular dynamics. Error estimators for both the temporal and spatial discretization are advocated and facilitate a fully adaptive propagation. For time integration, the implicit trapezoidal rule is employed, where an explicit predictor enables large time steps. The framework is developed and exemplified in the context of the classical Liouville equation, where Gaussian phase-space packets are used as particles. Simplified variants are discussed shortly, which should prove to be easily implementable in common molecular dynamics codes. A concept is illustrated by numerical examples for one-dimensional dynamics in double well potential.}, language = {en} } @misc{DeuflhardWeiserSeebass, author = {Deuflhard, Peter and Weiser, Martin and Seebass, Martin}, title = {A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3785}, number = {SC-98-35}, abstract = {In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE.}, language = {en} }