@article{WeiserDeuflhard2007, author = {Weiser, Martin and Deuflhard, Peter}, title = {Inexact central path following algorithms for optimal control problems}, series = {SIAM J. Control Opt.}, volume = {46}, journal = {SIAM J. Control Opt.}, number = {3}, pages = {792 -- 815}, year = {2007}, language = {en} } @article{WeiserZachowDeuflhard2010, author = {Weiser, Martin and Zachow, Stefan and Deuflhard, Peter}, title = {Craniofacial Surgery Planning Based on Virtual Patient Models}, series = {it - Information Technology}, volume = {52}, journal = {it - Information Technology}, number = {5}, publisher = {Oldenbourg Verlagsgruppe}, doi = {10.1524/itit.2010.0600}, pages = {258 -- 263}, year = {2010}, language = {en} } @article{WeiserSchielaDeuflhard2005, author = {Weiser, Martin and Schiela, Anton and Deuflhard, Peter}, title = {Asymptotic Mesh Independence of Newton's Method Revisited}, series = {SIAM J. Num. Anal.}, volume = {42}, journal = {SIAM J. Num. Anal.}, number = {5}, pages = {1830 -- 1845}, year = {2005}, language = {en} } @misc{WeiserSchielaDeuflhard, author = {Weiser, Martin and Schiela, Anton and Deuflhard, Peter}, title = {Asymptotic Mesh Independence of Newton's Method Revisited}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7352}, number = {03-13}, abstract = {The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems.}, language = {en} } @misc{DeuflhardNowakWeiser, author = {Deuflhard, Peter and Nowak, Ulrich and Weiser, Martin}, title = {Affine Invariant Adaptive Newton Codes for Discretized PDEs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7005}, number = {02-33}, abstract = {The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs.}, language = {en} } @misc{WeiserDeuflhardErdmann, author = {Weiser, Martin and Deuflhard, Peter and Erdmann, Bodo}, title = {Affine conjugate adaptive Newton methods for nonlinear elastomechanics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7768}, number = {04-01}, abstract = {The paper extends affine conjugate Newton methods from convex to nonconvex minimization, with particular emphasis on PDE problems originating from compressible hyperelasticity. Based on well-known schemes from finite dimensional nonlinear optimization, three different algorithmic variants are worked out in a function space setting, which permits an adaptive multilevel finite element implementation. These algorithms are tested on two well-known 3D test problems and a real-life example from surgical operation planning.}, language = {en} } @book{DeuflhardWeiser2012, author = {Deuflhard, Peter and Weiser, Martin}, title = {Adaptive numerical solution of PDEs}, publisher = {de Gruyter}, address = {Berlin}, year = {2012}, language = {en} }