@misc{Weiser2009, author = {Weiser, Martin}, title = {On goal-oriented adaptivity for elliptic optimal control problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11192}, number = {09-08}, year = {2009}, abstract = {The paper proposes goal-oriented error estimation and mesh refinement for optimal control problems with elliptic PDE constraints using the value of the reduced cost functional as quantity of interest. Error representation, hierarchical error estimators, and greedy-style error indicators are derived and compared to their counterparts when using the all-at-once cost functional as quantity of interest. Finally, the efficiency of the error estimator and generated meshes are demonstrated on numerical examples.}, language = {en} } @misc{SchielaWeiser2009, author = {Schiela, Anton and Weiser, Martin}, title = {Barrier methods for a control problem from hyperthermia treatment planning}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11567}, number = {09-36}, year = {2009}, abstract = {We consider an optimal control problem from hyperthermia treatment planning and its barrier regularization. We derive basic results, which lay the groundwork for the computation of optimal solutions via an interior point path-following method. Further, we report on a numerical implementation of such a method and its performance at an example problem.}, language = {en} } @misc{GoetschelWeiserSchiela2010, author = {G{\"o}tschel, Sebastian and Weiser, Martin and Schiela, Anton}, title = {Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11909}, number = {10-25}, year = {2010}, abstract = {This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study.}, language = {en} } @misc{WeiserGoetschel2010, author = {Weiser, Martin and G{\"o}tschel, Sebastian}, title = {State Trajectory Compression for Optimal Control with Parabolic PDEs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11676}, number = {10-05}, year = {2010}, abstract = {In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and quasi-Newton methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy coding maintaining an error bound is sufficient.}, language = {en} } @misc{LubkollSchielaWeiser2012, author = {Lubkoll, Lars and Schiela, Anton and Weiser, Martin}, title = {An optimal control problem in polyconvex hyperelasticity}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14745}, number = {12-08}, year = {2012}, abstract = {We consider a shape implant design problem that arises in the context of facial surgery. We introduce a reformulation as an optimal control problem, where the control acts as a boundary force. The state is modelled as a minimizer of a polyconvex hyperelastic energy functional. We show existence of optimal solutions and derive - on a formal level - first order optimality conditions. Finally, preliminary numerical results are presented.}, language = {en} } @misc{PruefertTroeltzschWeiser2004, author = {Pr{\"u}fert, Uwe and Tr{\"o}ltzsch, Fredi and Weiser, Martin}, title = {The convergence of an interior point method for an elliptic control problem with mixed control-state constraints}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8223}, number = {04-47}, year = {2004}, abstract = {The paper addresses primal interior point method for state constrained PDE optimal control problems. By a Lavrentiev regularization, the state constraint is transformed to a mixed control-state constraint with bounded Lagrange multiplier. Existence and convergence of the central path are established, and linear convergence of a short-step pathfollowing method is shown. The behaviour of the regularizations are demonstrated by numerical examples.}, language = {en} } @misc{WeiserGaenzlerSchiela2004, author = {Weiser, Martin and G{\"a}nzler, Tobias and Schiela, Anton}, title = {A Control Reduced Primal Interior Point Method for PDE Constrained Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8138}, number = {04-38}, year = {2004}, abstract = {A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparable coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples.}, language = {en} } @misc{GoetschelNagaiahKunischetal.2013, author = {G{\"o}tschel, Sebastian and Nagaiah, Chamakuri and Kunisch, Karl and Weiser, Martin}, title = {Lossy Compression in Optimal Control of Cardiac Defibrillation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18566}, year = {2013}, abstract = {This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples.}, language = {en} } @misc{GoetschelWeiser2013, author = {G{\"o}tschel, Sebastian and Weiser, Martin}, title = {Lossy Compression for PDE-constrained Optimization: Adaptive Error Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18575}, year = {2013}, abstract = {For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the ad-joint equation. The state enters into the adjoint equation, requiring the storage of a full 4D data set. If Newton-CG methods are used, two additional trajectories have to be stored. To get numerical results which are accurate enough, in many case very fine discretizations in time and space are necessary, which leads to a significant amount of data to be stored and transmitted to mass storage. Lossy compression methods were developed to overcome the storage problem by reducing the accuracy of the stored trajectories. The inexact data induces errors in the reduced gradient and reduced Hessian. In this paper, we analyze the influence of such a lossy trajectory compression method on Newton-CG methods for optimal control of parabolic PDEs and design an adaptive strategy for choosing appropriate quantization tolerances.}, language = {en} } @misc{GoetschelvonTycowiczPolthieretal.2013, author = {G{\"o}tschel, Sebastian and von Tycowicz, Christoph and Polthier, Konrad and Weiser, Martin}, title = {Reducing Memory Requirements in Scientific Computing and Optimal Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42695}, year = {2013}, abstract = {In high accuracy numerical simulations and optimal control of time-dependent processes, often both many time steps and fine spatial discretizations are needed. Adjoint gradient computation, or post-processing of simulation results, requires the storage of the solution trajectories over the whole time, if necessary together with the adaptively refined spatial grids. In this paper we discuss various techniques to reduce the memory requirements, focusing first on the storage of the solution data, which typically are double precision floating point values. We highlight advantages and disadvantages of the different approaches. Moreover, we present an algorithm for the efficient storage of adaptively refined, hierarchic grids, and the integration with the compressed storage of solution data.}, language = {en} }