@misc{HammerschmidtLockauZschiedrichetal., author = {Hammerschmidt, Martin and Lockau, Daniel and Zschiedrich, Lin and Schmidt, Frank}, title = {Optical modelling of incoherent substrate light-trapping in silicon thin film multi-junction solar cells with finite elements and domain decomposition}, issn = {1438-0064}, doi = {10.1117/12.2036346}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-50410}, abstract = {In many experimentally realized applications, e.g. photonic crystals, solar cells and light-emitting diodes, nano-photonic systems are coupled to a thick substrate layer, which in certain cases has to be included as a part of the optical system. The finite element method (FEM) yields rigorous, high accuracy solutions of full 3D vectorial Maxwell's equations [1] and allows for great flexibility and accuracy in the geometrical modelling. Time-harmonic FEM solvers have been combined with Fourier methods in domain decomposition algorithms to compute coherent solutions of these coupled system. [2,3] The basic idea of a domain decomposition approach lies in a decomposition of the domain into smaller subdomains, separate calculations of the solutions and coupling of these solutions on adjacent subdomains. In experiments light sources are often not perfectly monochromatic and hence a comparision to simulation results might only be justified if the simulation results, which include interference patterns in the substrate, are spectrally averaged. In this contribution we present a scattering matrix domain decomposition algorithm for Maxwell's equations based on FEM. We study its convergence and advantages in the context of optical simulations of silicon thin film multi-junction solar cells. This allows for substrate light-trapping to be included in optical simulations and leads to a more realistic estimation of light path enhancement factors in thin-film devices near the band edge.}, language = {en} } @inproceedings{LockauHammerschmidtHaschkeetal., author = {Lockau, Daniel and Hammerschmidt, Martin and Haschke, Jan and Blome, Mark and Ruske, Florian and Schmidt, Frank and Rech, Bernd}, title = {A comparison of scattering and non-scattering anti-reflection designs for back contacted polycrystalline thin film silicon solar cells in superstrate configuration}, series = {Proc. SPIE}, volume = {9140}, booktitle = {Proc. SPIE}, doi = {10.1117/12.2052362}, pages = {914006}, language = {en} } @misc{LockauHammerschmidtBlomeetal., author = {Lockau, Daniel and Hammerschmidt, Martin and Blome, Mark and Schmidt, Frank}, title = {Optics of thin film solar cells}, series = {MATHEON-Mathematics for Key Technologies}, volume = {1}, journal = {MATHEON-Mathematics for Key Technologies}, editor = {Deuflhard, Peter and et al.,}, publisher = {European Mathematical Society}, doi = {10.4171/137}, pages = {278 -- 279}, language = {en} } @inproceedings{JaegerBarthHammerschmidtetal., author = {J{\"a}ger, Klaus and Barth, Carlo and Hammerschmidt, Martin and Herrmann, Sven and Burger, Sven and Schmidt, Frank and Becker, Christiane}, title = {Sinusoidal Nanotextures for Enhanced Light Management in Thin-Film Solar Cells}, series = {28th Workshop on Quantum Solar Energy Conversion - (QUANTSOL)}, booktitle = {28th Workshop on Quantum Solar Energy Conversion - (QUANTSOL)}, editor = {European Society for Quantum Solar Energy Conversion,}, language = {en} } @article{JaegerKoeppelBarthetal., author = {J{\"a}ger, Klaus and K{\"o}ppel, Grit and Barth, Carlo and Hammerschmidt, Martin and Herrmann, Sven and Burger, Sven and Schmidt, Frank and Becker, Christiane}, title = {Sinusoidal gratings for optimized light management in c-Si thin-film solar cells}, series = {Proc. SPIE}, volume = {9898}, journal = {Proc. SPIE}, doi = {10.1117/12.2225459}, pages = {989808}, language = {en} } @inproceedings{BurgerGutscheHammerschmidtetal., author = {Burger, Sven and Gutsche, Philipp and Hammerschmidt, Martin and Herrmann, Sven and Pomplun, Jan and Schmidt, Frank and Wohlfeil, Benjamin and Zschiedrich, Lin}, title = {Hp-finite-elements for simulating electromagnetic fields in optical devices with rough textures}, series = {Proc. SPIE}, volume = {9630}, booktitle = {Proc. SPIE}, doi = {10.1117/12.2190119}, pages = {96300S}, language = {en} } @inproceedings{BurgerHammerschmidtHerrmannetal., author = {Burger, Sven and Hammerschmidt, Martin and Herrmann, Sven and Pomplun, Jan and Schmidt, Frank}, title = {Reduced basis methods for optimization of nano-photonic devices}, series = {Proc. Int. Conf. Numerical Simulation of Optoelectronic Devices (NUSOD)}, booktitle = {Proc. Int. Conf. Numerical Simulation of Optoelectronic Devices (NUSOD)}, doi = {10.1109/NUSOD.2015.7292871}, pages = {159}, language = {en} } @inproceedings{JaegerBarthHammerschmidtetal., author = {J{\"a}ger, Klaus and Barth, Carlo and Hammerschmidt, Martin and Herrmann, Sven and Burger, Sven and Schmidt, Frank and Becker, Christiane}, title = {Sinusoidal Nanotextures for Coupling Light into c-Si Thin-Film Solar Cells}, series = {Light, Energy and the Environement 2015}, booktitle = {Light, Energy and the Environement 2015}, doi = {10.1364/PV.2015.PTu4B.3}, pages = {PTu4B.3}, language = {en} } @inproceedings{BarthJaegerBurgeretal., author = {Barth, Carlo and J{\"a}ger, Klaus and Burger, Sven and Hammerschmidt, Martin and Schmidt, Frank and Becker, Christiane}, title = {Design of Photonic Crystals with Near-Surface Field Enhancement}, series = {Light, Energy and the Environement 2015}, booktitle = {Light, Energy and the Environement 2015}, doi = {10.1364/PV.2015.JTu5A.9}, pages = {JTu5A.9}, language = {en} } @article{LockauSontheimerPreideletal., author = {Lockau, Daniel and Sontheimer, Tobias and Preidel, Veit and Ruske, Florian and Hammerschmidt, Martin and Becker, Christiane and Schmidt, Frank and Rech, Bernd}, title = {Advanced microhole arrays for light trapping in thin film silicon solar cells}, series = {Solar Energy Materials and Solar Cells}, volume = {125}, journal = {Solar Energy Materials and Solar Cells}, doi = {10.1016/j.solmat.2013.11.024}, pages = {298 -- 304}, language = {en} } @article{KirnerHammerschmidtSchwankeetal.2014, author = {Kirner, Simon and Hammerschmidt, Martin and Schwanke, Christoph and Lockau, Daniel and Calnan, Sonya and Frijnts, Tim and Neubert, Sebastian and Sch{\"o}pke, Andreas and Schmidt, Frank and Zollondz, Jens-Hendrik and Heidelberg, Andreas and Stannowski, Bernd and Rech, Bernd and Schlatmann, Rutger}, title = {Implications of TCO Topography on Intermediate Reflector Design for a-Si/μc-Si Tandem Solar Cells — Experiments and Rigorous Optical Simulations}, series = {IEEE Journal of Photovoltaics}, volume = {4}, journal = {IEEE Journal of Photovoltaics}, number = {1}, doi = {10.1109/JPHOTOV.2013.2279204}, pages = {10 -- 15}, year = {2014}, language = {en} } @inproceedings{HammerschmidtPomplunBurgeretal.2014, author = {Hammerschmidt, Martin and Pomplun, Jan and Burger, Sven and Schmidt, Frank}, title = {Adaptive sampling strategies for effcient parameter scans in nano-photonic device simulations}, series = {Proc. SPIE}, volume = {8980}, booktitle = {Proc. SPIE}, publisher = {SPIE}, doi = {10.1117/12.2036363}, pages = {89801O}, year = {2014}, language = {en} } @inproceedings{HammerschmidtLockauZschiedrichetal.2014, author = {Hammerschmidt, Martin and Lockau, Daniel and Zschiedrich, Lin and Schmidt, Frank}, title = {Optical modelling of incoherent substrate light-trapping in silicon thin film multi-junction solar cells with finite elements and domain decomposition}, series = {Proc. SPIE: Physics and Simulation of Optoelectronic Devices XXII}, volume = {8980}, booktitle = {Proc. SPIE: Physics and Simulation of Optoelectronic Devices XXII}, publisher = {SPIE}, doi = {10.1117/12.2036346}, pages = {898007}, year = {2014}, language = {en} } @inproceedings{BarthRoderBrodoceanuetal., author = {Barth, Carlo and Roder, Sebastian and Brodoceanu, Daniel and Kraus, Tobias and Burger, Sven and Hammerschmidt, Martin and Schmidt, Frank and Becker, Christiane}, title = {Increased fluorescence of PbS quantum dots on photonic crystal slab structures}, series = {Proc. Europ. Opt. Soc. Ann. Meet. 2016 (EOSAM)}, booktitle = {Proc. Europ. Opt. Soc. Ann. Meet. 2016 (EOSAM)}, isbn = {978-1-5108-4796-5}, pages = {181}, language = {en} } @inproceedings{HammerschmidtBarthBurgeretal., author = {Hammerschmidt, Martin and Barth, Carlo and Burger, Sven and Becker, Christiane and Schmidt, Frank}, title = {Determining 2D photonic crystal geometries from reflectance spectra with a reduced basis method}, series = {Proc. Europ. Opt. Soc. Ann. Meet. 2016 (EOSAM)}, booktitle = {Proc. Europ. Opt. Soc. Ann. Meet. 2016 (EOSAM)}, isbn = {978-1-5108-4796-5}, pages = {281}, language = {en} } @misc{HammerschmidtHerrmannPomplunetal., author = {Hammerschmidt, Martin and Herrmann, Sven and Pomplun, Jan and Burger, Sven and Schmidt, Frank}, title = {Model order reduction for the time-harmonic Maxwell equation applied to complex nanostructures}, series = {Proc. SPIE}, volume = {9742}, journal = {Proc. SPIE}, issn = {1438-0064}, doi = {10.1117/12.2212367}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57239}, pages = {97420M}, abstract = {Fields such as optical metrology and computational lithography require fast and efficient methods for solving the time-harmonic Maxwell's equation. Highly accurate geometrical modeling and numerical accuracy atcomputational costs are a prerequisite for any simulation study of complex nano-structured photonic devices. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem based on the hp-adaptive finite element solver JCMsuite capable of handling geometric and non-geometric parameter dependencies allowing for online evaluations in milliseconds. We apply the RBM to compute light-scatteringoptical wavelengths off periodic arrays of fin field-effect transistors (FinFETs) where geometrical properties such as the width and height of the fin and gate can vary in a large range.}, language = {en} } @misc{HammerschmidtBarthPomplunetal., author = {Hammerschmidt, Martin and Barth, Carlo and Pomplun, Jan and Burger, Sven and Becker, Christiane and Schmidt, Frank}, title = {Reconstruction of photonic crystal geometries using a reduced basis method for nonlinear outputs}, issn = {1438-0064}, doi = {10.1117/12.2212482}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57249}, abstract = {Maxwell solvers based on the hp-adaptive finite element method allow for accurate geometrical modeling and high numerical accuracy. These features are indispensable for the optimization of optical properties or reconstruction of parameters through inverse processes. High computational complexity prohibits the evaluation of the solution for many parameters. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem allowing to compute solutions for a parameter configuration orders of magnitude faster. The RBM allows to evaluate linear and nonlinear outputs of interest like Fourier transform or the enhancement of the electromagnetic field in milliseconds. We apply the RBM to compute light-scattering off two dimensional photonic crystal structures made of silicon and reconstruct geometrical parameters.}, language = {en} } @misc{HammerschmidtHerrmannBurgeretal., author = {Hammerschmidt, Martin and Herrmann, Sven and Burger, Sven and Pomplun, Jan and Schmidt, Frank}, title = {Reduced basis method for the optimization of nano-photonic devices}, issn = {1438-0064}, doi = {10.1007/s11082-016-0530-1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57556}, abstract = {Optical 3D simulations in many-query and real-time contexts require new solution strategies. We study an adaptive, error controlled reduced basis method for solving parametrized time-harmonic optical scattering problems. Application fields are, among others, design and optimization problems of nano-optical devices as well as inverse problems for parameter reconstructions occuring e. g. in optical metrology. The reduced basis method presented here relies on a finite element modeling of the scattering problem with parametrization of materials, geometries and sources.}, language = {en} }