@article{SchimunekSeidlElezetal.2023, author = {Schimunek, Johannes and Seidl, Philipp and Elez, Katarina and Hempel, Tim and Le, Tuan and No{\´e}, Frank and Olsson, Simon and Raich, Llu{\´i}s and Winter, Robin and Gokcan, Hatice and Gusev, Filipp and Gutkin, Evgeny M. and Isayev, Olexandr and Kurnikova, Maria G. and Narangoda, Chamali H. and Zubatyuk, Roman and Bosko, Ivan P. and Furs, Konstantin V. and Karpenko, Anna D. and Kornoushenko, Yury V. and Shuldau, Mikita and Yushkevich, Artsemi and Benabderrahmane, Mohammed B. and Bousquet-Melou, Patrick and Bureau, Ronan and Charton, Beatrice and Cirou, Bertrand C. and Gil, G{\´e}rard and Allen, William J. and Sirimulla, Suman and Watowich, Stanley and Antonopoulos, Nick and Epitropakis, Nikolaos and Krasoulis, Agamemnon and Itsikalis, Vassilis and Theodorakis, Stavros and Kozlovskii, Igor and Maliutin, Anton and Medvedev, Alexander and Popov, Petr and Zaretckii, Mark and Eghbal-Zadeh, Hamid and Halmich, Christina and Hochreiter, Sepp and Mayr, Andreas and Ruch, Peter and Widrich, Michael and Berenger, Francois and Kumar, Ashutosh and Yamanishi, Yoshihiro and Zhang, Kam Y. J. and Bengio, Emmanuel and Bengio, Yoshua and Jain, Moksh J. and Korablyov, Maksym and Liu, Cheng-Hao and Marcou, Gilles and Glaab, Enrico and Barnsley, Kelly and Iyengar, Suhasini M. and Ondrechen, Mary Jo and Haupt, V. Joachim and Kaiser, Florian and Schroeder, Michael and Pugliese, Luisa and Albani, Simone and Athanasiou, Christina and Beccari, Andrea and Carloni, Paolo and D'Arrigo, Giulia and Gianquinto, Eleonora and Goßen, Jonas and Hanke, Anton and Joseph, Benjamin P. and Kokh, Daria B. and Kovachka, Sandra and Manelfi, Candida and Mukherjee, Goutam and Mu{\~n}iz-Chicharro, Abraham and Musiani, Francesco and Nunes-Alves, Ariane and Paiardi, Giulia and Rossetti, Giulia and Sadiq, S. Kashif and Spyrakis, Francesca and Talarico, Carmine and Tsengenes, Alexandros and Wade, Rebecca C. and Copeland, Conner and Gaiser, Jeremiah and Olson, Daniel R. and Roy, Amitava and Venkatraman, Vishwesh and Wheeler, Travis J. and Arthanari, Haribabu and Blaschitz, Klara and Cespugli, Marco and Durmaz, Vedat and Fackeldey, Konstantin and Fischer, Patrick D. and Gorgulla, Christoph and Gruber, Christian and Gruber, Karl and Hetmann, Michael and Kinney, Jamie E. and Padmanabha Das, Krishna M. and Pandita, Shreya and Singh, Amit and Steinkellner, Georg and Tesseyre, Guilhem and Wagner, Gerhard and Wang, Zi-Fu and Yust, Ryan J. and Druzhilovskiy, Dmitry S. and Filimonov, Dmitry A. and Pogodin, Pavel V. and Poroikov, Vladimir and Rudik, Anastassia V. and Stolbov, Leonid A. and Veselovsky, Alexander V. and De Rosa, Maria and De Simone, Giada and Gulotta, Maria R. and Lombino, Jessica and Mekni, Nedra and Perricone, Ugo and Casini, Arturo and Embree, Amanda and Gordon, D. Benjamin and Lei, David and Pratt, Katelin and Voigt, Christopher A. and Chen, Kuang-Yu and Jacob, Yves and Krischuns, Tim and Lafaye, Pierre and Zettor, Agn{\`e}s and Rodr{\´i}guez, M. Luis and White, Kris M. and Fearon, Daren and Von Delft, Frank and Walsh, Martin A. and Horvath, Dragos and Brooks III, Charles L. and Falsafi, Babak and Ford, Bryan and Garc{\´i}a-Sastre, Adolfo and Yup Lee, Sang and Naffakh, Nadia and Varnek, Alexandre and Klambauer, G{\"u}nter and Hermans, Thomas M.}, title = {A community effort in SARS-CoV-2 drug discovery}, series = {Molecular Informatics}, volume = {43}, journal = {Molecular Informatics}, number = {1}, doi = {https://doi.org/10.1002/minf.202300262}, pages = {e202300262}, year = {2023}, language = {en} } @misc{FrankFuegenschuhHertyetal., author = {Frank, Martin and F{\"u}genschuh, Armin and Herty, Michael and Schewe, Lars}, title = {The Coolest Path Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11571}, number = {09-37}, abstract = {We introduce the coolest path problem, which is a mixture of two well-known problems from distinct mathematical fields. One of them is the shortest path problem from combinatorial optimization. The other is the heat conduction problem from the field of partial differential equations. Together, they make up a control problem, where some geometrical object traverses a digraph in an optimal way, with constraints on intermediate or the final state. We discuss some properties of the problem and present numerical solution techniques. We demonstrate that the problem can be formulated as a linear mixed-integer program. Numerical solutions can thus be achieved within one hour for instances with up to 70 nodes in the graph.}, language = {en} } @article{GroetschelHarary1979, author = {Gr{\"o}tschel, Martin and Harary, Frank}, title = {The Graphs for which All Strong Orientations Are Hamiltonian}, series = {Journal of Graph Theory}, volume = {3}, journal = {Journal of Graph Theory}, pages = {221 -- 223}, year = {1979}, language = {en} } @article{EnkeSteinmetzAdorfetal.2011, author = {Enke, Harry and Steinmetz, Matthias and Adorf, Hans-Martin and Beck-Ratzka, Alexander and Breitling, Frank and Br{\"u}semeister, Thomas and Carlson, Arthur and Ensslin, Torsten and H{\"o}gqvist, Mikael and Nickelt, Iliya and Radke, Thomas and Reinefeld, Alexander and Reiser, Angelika and Scholl, Tobias and Spurzem, Rainer and Steinacker, J{\"u}rgen and Voges, Wolfgang and Wambsganß, Joachim and White, Steve}, title = {AstroGrid-D: Grid technology for astronomical science}, series = {New Astronomy}, volume = {16}, journal = {New Astronomy}, number = {2}, doi = {10.1016/j.newast.2010.07.005}, pages = {79 -- 93}, year = {2011}, language = {en} } @inproceedings{HammerschmidtLockauBurgeretal.2012, author = {Hammerschmidt, Martin and Lockau, Daniel and Burger, Sven and Schmidt, Frank and Schwanke, Christoph and Kirner, Simon and Calnan, Sonya and Stannowski, Bernd and Rech, Bernd}, title = {3D optical modeling of thin-film a-Si/mc-Si tandem solar cells with random textured interfaces using FEM}, series = {Renewable Energy and the Environment Optics and Photonics Congress}, booktitle = {Renewable Energy and the Environment Optics and Photonics Congress}, publisher = {Optical Society of America}, doi = {10.1364/E2.2012.JM5A.15}, pages = {JM5A.15}, year = {2012}, language = {en} } @article{HammerschmidtLockauBurgeretal.2013, author = {Hammerschmidt, Martin and Lockau, Daniel and Burger, Sven and Schmidt, Frank and Schwanke, Christoph and Kirner, Simon and Calnan, Sonya and Stannowski, Bernd and Rech, Bernd}, title = {FEM-based optical modeling of silicon thin-film tandem solar cells with randomly textured interfaces in 3D}, series = {Proc. SPIE}, volume = {8620}, journal = {Proc. SPIE}, doi = {10.1117/12.2001789}, pages = {86201H}, year = {2013}, language = {en} } @inproceedings{ZschiedrichGreinerPomplunetal.2012, author = {Zschiedrich, Lin and Greiner, Horst and Pomplun, Jan and Hammerschmidt, Martin and Burger, Sven and Schmidt, Frank}, title = {FEM simulations of light extraction from nanostructured organic light-emitting diodes}, series = {Renewable Energy and the Environment Optics and Photonics Congress}, booktitle = {Renewable Energy and the Environment Optics and Photonics Congress}, publisher = {Optical Society of America}, doi = {10.1364/SOLED.2012.LT2B.5}, pages = {LT2B.5}, year = {2012}, language = {en} } @article{GutschePoulikakosHammerschmidtetal., author = {Gutsche, Philipp and Poulikakos, Lisa and Hammerschmidt, Martin and Burger, Sven and Schmidt, Frank}, title = {Time-harmonic optical chirality in inhomogeneous space}, series = {Proc. SPIE}, volume = {9756}, journal = {Proc. SPIE}, doi = {10.1117/12.2209551}, pages = {97560X}, language = {en} } @misc{GutschePoulikakosBurgeretal., author = {Gutsche, Philipp and Poulikakos, Lisa and Burger, Sven and Hammerschmidt, Martin and Schmidt, Frank}, title = {Optical chirality: conservation law in arbitrary space}, series = {606. WE-Heraeus-Seminar on Nanophotonics and Complex Spatial Modes of Light}, journal = {606. WE-Heraeus-Seminar on Nanophotonics and Complex Spatial Modes of Light}, abstract = {The introduction of the near-field quantity of optical chirality has emerged in various numerical and few experimental studies of local chirality enhancement due to its relation to the excitation rate of chiral molecules. This time-even pseudoscalar has been dismissed as being a higher-order version of helicity. Nevertheless, we revisit the derivation of the underlying conservation law and define optical chirality in media similar to. We identify the mechanism of chirality conversion by either inhomogeneous or anisotropic space to complement the conservation of optical chirality. The conservation law of optical chirality in arbitrary space enables the extension of the concept of polarization to the near-field where no distiniguished propagation direction of light is present. We show that the connection of electromagnetic energy and optical chirality provide the ability to define a circular polarization basis in time-harmonic near-field analysis. In order to illustrate our theory, we present electromagnetic field simulations of simple as well as more complex nanostructures. Results using the well-known far-field polarization concept are readily reproduced and extended from the point of view of chirality conversion.}, language = {en} } @article{HammerschmidtBarthPomplunetal., author = {Hammerschmidt, Martin and Barth, Carlo and Pomplun, Jan and Burger, Sven and Becker, Christiane and Schmidt, Frank}, title = {Reconstruction of photonic crystal geometries using a reduced basis method for nonlinear outputs}, series = {Proc. SPIE}, volume = {9756}, journal = {Proc. SPIE}, doi = {10.1117/12.2212482}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-58187}, pages = {97561R}, abstract = {Maxwell solvers based on the hp-adaptive finite element method allow for accurate geometrical modeling and high numerical accuracy. These features are indispensable for the optimization of optical properties or reconstruction of parameters through inverse processes. High computational complexity prohibits the evaluation of the solution for many parameters. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem allowing to compute solutions for a parameter configuration orders of magnitude faster. The RBM allows to evaluate linear and nonlinear outputs of interest like Fourier transform or the enhancement of the electromagnetic field in milliseconds. We apply the RBM to compute light-scattering off two dimensional photonic crystal structures made of silicon and reconstruct geometrical parameters.}, language = {en} }