@misc{AardalHoeselKosteretal., author = {Aardal, Karen I. and Hoesel, Stan P.M. van and Koster, Arie M.C.A. and Mannino, Carlo and Sassano, Antonio}, title = {Models and Solution Techniques for Frequency Assignment Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6667}, number = {01-40}, abstract = {{\begin{rawhtml} Revised Version unter http://dx.doi.org/10.1007/s10479-007-0178-0 \end{rawhtml}} Wireless communication is used in many different situations such as mobile telephony, radio and TV broadcasting, satellite communication, and military operations. In each of these situations a frequency assignment problem arises with application specific characteristics. Researchers have developed different modelling ideas for each of the features of the problem, such as the handling of interference among radio signals, the availability of frequencies, and the optimization criterion. This survey gives an overview of the models and methods that the literature provides on the topic. We present a broad description of the practical settings in which frequency assignment is applied. We also present a classification of the different models and formulations described in the literature, such that the common features of the models are emphasized. The solution methods are divided in two parts. Optimization and lower bounding techniques on the one hand, and heuristic search techniques on the other hand. The literature is classified according to the used methods. Again, we emphasize the common features, used in the different papers. The quality of the solution methods is compared, whenever possible, on publicly available benchmark instances.}, language = {en} } @book{AbbinkBaermannBešinovicetal., author = {Abbink, Erwin and B{\"a}rmann, Andreas and Bešinovic, Nikola and Bohlin, Markus and Cacchiani, Valentina and Caimi, Gabrio and de Fabris, Stefano and Dollevoet, Twan and Fischer, Frank and F{\"u}genschuh, Armin and Galli, Laura and Goverde, Rob M.P. and Hansmann, Ronny and Homfeld, Henning and Huisman, Dennis and Johann, Marc and Klug, Torsten and T{\"o}rnquist Krasemann, Johanna and Kroon, Leo and Lamorgese, Leonardo and Liers, Frauke and Mannino, Carlo and Medeossi, Giorgio and Pacciarelli, Dario and Reuther, Markus and Schlechte, Thomas and Schmidt, Marie and Sch{\"o}bel, Anita and Sch{\"u}lldorf, Hanno and Stieber, Anke and Stiller, Sebastian and Toth, Paolo and Zimmermann, Uwe}, title = {Handbook of Optimization in the Railway Industry}, volume = {268}, editor = {Bornd{\"o}rfer, Ralf and Klug, Torsten and Lamorgese, Leonardo and Mannino, Carlo and Reuther, Markus and Schlechte, Thomas}, publisher = {Springer Verlag}, isbn = {978-3-319-72152-1}, doi = {10.1007/978-3-319-72153-8}, abstract = {This book promotes the use of mathematical optimization and operations research methods in rail transportation. The editors assembled thirteen contributions from leading scholars to present a unified voice, standardize terminology, and assess the state-of-the-art. There are three main clusters of articles, corresponding to the classical stages of the planning process: strategic, tactical, and operational. These three clusters are further subdivided into five parts which correspond to the main phases of the railway network planning process: network assessment, capacity planning, timetabling, resource planning, and operational planning. Individual chapters cover: Simulation Capacity Assessment Network Design Train Routing Robust Timetabling Event Scheduling Track Allocation Blocking Shunting Rolling Stock Crew Scheduling Dispatching Delay Propagation}, language = {en} } @article{BorndoerferKlugLamorgeseetal., author = {Bornd{\"o}rfer, Ralf and Klug, Torsten and Lamorgese, Leonardo and Mannino, Carlo and Reuther, Markus and Schlechte, Thomas}, title = {Recent success stories on integrated optimization of railway systems}, series = {Transportation Research Part C: Emerging Technologies}, volume = {74}, journal = {Transportation Research Part C: Emerging Technologies}, number = {1}, doi = {10.1016/j.trc.2016.11.015}, pages = {196 -- 211}, abstract = {Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain developing mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice (e.g. Cacchiani et al., 2014; Bornd{\"o}rfer et al., 2010), with a few notable exceptions. In this paper we address three individual success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will discuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that mathematical optimization can support the planning of railway resources. Thus, mathematical models and optimization can lead to a greater efficiency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.}, language = {en} } @misc{BorndoerferKlugLamorgeseetal., author = {Bornd{\"o}rfer, Ralf and Klug, Torsten and Lamorgese, Leonardo and Mannino, Carlo and Reuther, Markus and Schlechte, Thomas}, title = {Recent Success Stories on Optimization of Railway Systems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53726}, abstract = {Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway cus- tomers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain devel- oping mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice, with a few notable exceptions. In this paper we address three success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will dis- cuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that math- ematical optimization can support the planning of rolling stock resources. Thus, mathematical models and optimization can lead to a greater effi- ciency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.}, language = {en} } @inproceedings{BorndoerferLamorgeseKlugetal.2015, author = {Bornd{\"o}rfer, Ralf and Lamorgese, Leonardo and Klug, Torsten and Mannino, Carlo and Reuther, Markus and Schlechte, Thomas}, title = {Recent Success Stories on Optimization of Railway Systems}, series = {Proceedings of the IAROR conference RailTokyo}, booktitle = {Proceedings of the IAROR conference RailTokyo}, year = {2015}, abstract = {Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway cus- tomers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain devel- oping mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice, with a few notable exceptions. In this paper we address three success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will dis- cuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that math- ematical optimization can support the planning of rolling stock resources. Thus, mathematical models and optimization can lead to a greater effi- ciency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.}, language = {en} } @incollection{D'AndreagiovanniMannino, author = {D'Andreagiovanni, Fabio and Mannino, Carlo}, title = {An Optimization Model for WiMAX Network Planning and Optimization}, series = {WiMAX Network Planning and Optimization}, booktitle = {WiMAX Network Planning and Optimization}, publisher = {Auerbach Publications}, isbn = {978-1-4200-6662-3}, pages = {369 -- 386}, language = {en} } @article{D'AndreagiovanniManninoSassano, author = {D'Andreagiovanni, Fabio and Mannino, Carlo and Sassano, Antonio}, title = {GUB Covers and Power-Indexed Formulations for Wireless Network Design}, series = {Management Science}, volume = {59}, journal = {Management Science}, number = {1}, doi = {10.1287/mnsc.1120.1571}, pages = {142 -- 156}, language = {en} } @inproceedings{D'AndreagiovanniManninoSassano, author = {D'Andreagiovanni, Fabio and Mannino, Carlo and Sassano, Antonio}, title = {Negative Cycle Separation in Wireless Network Design}, series = {Network Optimization - INOC 2011}, volume = {6701}, booktitle = {Network Optimization - INOC 2011}, doi = {10.1007/978-3-642-21527-8_7}, pages = {51 -- 56}, language = {en} }