@article{LindowBaumHege2014, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Ligand Excluded Surface: A New Type of Molecular Surface}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {20}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2014.2346404}, pages = {2486 -- 2495}, year = {2014}, abstract = {The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes - including visualization, analysis of molecular interactions and the study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare the LES for several molecules, using as ligands either water or small organic molecules.}, language = {en} } @misc{LindowBaumHege, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Ligand Excluded Surface: A New Type of Molecular Surface}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-51194}, abstract = {The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes - including visualization, analysis of molecular interactions and the study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare the LES for several molecules, using as ligands either water or small organic molecules.}, language = {en} } @inproceedings{LindowBaumBondaretal.2012, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Dynamic Channels in Biomolecular Systems: Path Analysis and Visualization}, series = {Proceedings of IEEE Symposium on Biological Data Visualization (biovis'12)}, booktitle = {Proceedings of IEEE Symposium on Biological Data Visualization (biovis'12)}, doi = {10.1109/BioVis.2012.6378599}, pages = {99 -- 106}, year = {2012}, language = {en} } @inproceedings{KuhnLindowGuentheretal.2013, author = {Kuhn, Alexander and Lindow, Norbert and G{\"u}nther, Tobias and Wiebel, Alexander and Theisel, Holger and Hege, Hans-Christian}, title = {Trajectory Density Projection for Vector Field Visualization}, series = {EuroVis 2013, short papers. M. Hlawitschka, Tino Weinkauf (eds.)}, booktitle = {EuroVis 2013, short papers. M. Hlawitschka, Tino Weinkauf (eds.)}, doi = {10.2312/PE.EuroVisShort.EuroVisShort2013.031-035}, pages = {31 -- 35}, year = {2013}, language = {en} } @misc{Lindow2010, type = {Master Thesis}, author = {Lindow, Norbert}, title = {Dynamische Molek{\"u}loberfl{\"a}chen}, year = {2010}, language = {de} } @article{LindowBaumHege2011, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Voronoi-Based Extraction and Visualization of Molecular Paths}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2011.259}, pages = {2025 -- 2034}, year = {2011}, language = {en} } @article{LindowBaumProhaskaetal.2010, author = {Lindow, Norbert and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {Accelerated Visualization of Dynamic Molecular Surfaces}, series = {Comput. Graph. Forum}, volume = {29}, journal = {Comput. Graph. Forum}, doi = {10.1111/j.1467-8659.2009.01693.x}, pages = {943 -- 952}, year = {2010}, language = {en} } @article{LindowBaumBondaretal.2013, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Exploring cavity dynamics in biomolecular systems}, series = {BMC Bioinformatics}, volume = {14}, journal = {BMC Bioinformatics}, edition = {(Suppl 19):S5}, doi = {10.1186/1471-2105-14-S19-S5}, year = {2013}, language = {en} } @article{CourniaAllenAndricioaeietal.2015, author = {Cournia, Zoe and Allen, Toby W. and Andricioaei, Ioan and Antonny, Bruno and Baum, Daniel and Brannigan, Grace and Buchete, Nicolae-Viorel and Deckman, Jason T. and Delemotte, Lucie and del Val, Coral and Friedman, Ran and Gkeka, Paraskevi and Hege, Hans-Christian and H{\´e}nin, J{\´e}r{\^o}me and Kasimova, Marina A. and Kolocouris, Antonios and Klein, Michael L. and Khalid, Syma and Lemieux, Joanne and Lindow, Norbert and Roy, Mahua and Selent, Jana and Tarek, Mounir and Tofoleanu, Florentina and Vanni, Stefano and Urban, Sinisa and Wales, David J. and Smith, Jeremy C. and Bondar, Ana-Nicoleta}, title = {Membrane Protein Structure, Function and Dynamics: A Perspective from Experiments and Theory}, series = {Journal of Membrane Biology}, volume = {248}, journal = {Journal of Membrane Biology}, number = {4}, doi = {10.1007/s00232-015-9802-0}, pages = {611 -- 640}, year = {2015}, language = {en} } @article{MuecklichWebelAboulfadletal., author = {M{\"u}cklich, Frank and Webel, Johannes and Aboulfadl, Hisham and Lindow, Norbert and Hege, Hans-Christian}, title = {Correlative Tomography - Extraction of Reliable Information with Adequate Resolution from mm Scale Down to Sub-nm Scale}, series = {Microsc. Microanal.}, volume = {20}, journal = {Microsc. Microanal.}, number = {Suppl 3}, doi = {10.1017/S1431927614005911}, pages = {838 -- 839}, language = {en} } @misc{KozlikovaKroneFalketal., author = {Kozlikova, Barbora and Krone, Michael and Falk, Martin and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art}, issn = {1438-0064}, doi = {10.2312/eurovisstar.20151112}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57217}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets.}, language = {en} } @misc{KroneKozlikovaLindowetal., author = {Krone, Michael and Kozlikova, Barbora and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Parulek, Julius and Hege, Hans-Christian and Viola, Ivan}, title = {Visual Analysis of Biomolecular Cavities: State of the Art}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60193}, abstract = {In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field.}, language = {en} } @phdthesis{Lindow, author = {Lindow, Norbert}, title = {Visual Analysis of Atomic Structures Based on the Hard-Sphere Model}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63190}, abstract = {Visualization and Analysis of atomic compositions is essential to understand the structure and functionality of molecules. There exist versatile areas of applications, from fundamental researches in biophysics and materials science to drug development in pharmaceutics. For most applications, the hard-sphere model is the most often used molecular model. Although the model is a quite simple approximation of reality, it enables investigating important physical properties in a purely geometrical manner. Furthermore, large data sets with thousands up to millions of atoms can be visualized and analyzed. In addition to an adequate and efficient visualization of the data, the extraction of important structures plays a major role. For the investigation of biomolecules, such as proteins, especially the analysis of cavities and their dynamics is of high interest. Substrates can bind in cavities, thereby inducing changes in the function of the protein. Another example is the transport of substrates through membrane proteins by the dynamics of the cavities. For both, the visualization as well as the analysis of cavities, the following contributions will be presented in this thesis: 1. The rendering of smooth molecular surfaces for the analysis of cavities is accelerated and visually improved, which allows showing dynamic proteins. On the other hand, techniques are proposed to interactively render large static biological structures and inorganic materials up to atomic resolution for the first time. 2. A Voronoi-based method is presented to extract molecular cavities. The procedure comes with a high geometrical accuracy by a comparatively fast computation time. Additionally, new methods are presented to visualize and highlight the cavities within the molecular structure. In a further step, the techniques are extended for dynamic molecular data to trace cavities over time and visualize topological changes. 3. To further improve the accuracy of the approaches mentioned above, a new molecular surface model is presented that shows the accessibility of a substrate. For the first time, the structure and dynamics of the substrate as hard-sphere model is considered for the accessibility computation. In addition to the definition of the surface, an efficient algorithm for its computation is proposed, which additionally allows extracting cavities. The presented algorithms are demonstrated on different molecular data sets. The data sets are either the result of physical or biological experiments or molecular dynamics simulations.}, language = {en} } @article{RedemannBaumgartLindowetal.2017, author = {Redemann, Stefanie and Baumgart, Johannes and Lindow, Norbert and Shelley, Michael and Nazockdast, Ehssan and Kratz, Andrea and Prohaska, Steffen and Brugu{\´e}s, Jan and F{\"u}rthauer, Sebastian and M{\"u}ller-Reichert, Thomas}, title = {C. elegans chromosomes connect to centrosomes by anchoring into the spindle network}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15288}, doi = {10.1038/ncomms15288}, year = {2017}, abstract = {The mitotic spindle ensures the faithful segregation of chromosomes. Here we combine the first large-scale serial electron tomography of whole mitotic spindles in early C. elegans embryos with live-cell imaging to reconstruct all microtubules in 3D and identify their plus- and minus-ends. We classify them as kinetochore (KMTs), spindle (SMTs) or astral microtubules (AMTs) according to their positions, and quantify distinct properties of each class. While our light microscopy and mutant studies show that microtubules are nucleated from the centrosomes, we find only a few KMTs directly connected to the centrosomes. Indeed, by quantitatively analysing several models of microtubule growth, we conclude that minus-ends of KMTs have selectively detached and depolymerized from the centrosome. In toto, our results show that the connection between centrosomes and chromosomes is mediated by an anchoring into the entire spindle network and that any direct connections through KMTs are few and likely very transient.}, language = {en} } @inproceedings{ArltLindowBaumetal., author = {Arlt, Tobias and Lindow, Norbert and Baum, Daniel and Hilger, Andre and Mahnke, Ingo and Hege, Hans-Christian and Lepper, Verena and Siopi, Tzulia and Mahnke, Heinz.Eberhard}, title = {Virtual Access to Hidden Texts - Study of Ancient Papyri}, series = {Eighth Joint BER II and BESSY II User Meeting, Dec 7-9, 2016, Berlin, Germany}, booktitle = {Eighth Joint BER II and BESSY II User Meeting, Dec 7-9, 2016, Berlin, Germany}, abstract = {When physical unfolding/unrolling of papyri is not possible or too dangerous for preserving the precious object, tomographic approaches may be the ap- propriate alternative. Requirements are the resolution and the contrast to distinguish writing and substrate. The steps to be performed are the following: (1) Select the object of interest (archaeological arguments, cultural back- ground of the object, etc.). (2) Find the proper physical procedure, especially with respect to contrast, take the tomographic data, e.g. by absorption x-ray tomography. (3) Apply mathematical unfolding transformations to the tomographic data, in order to obtain a 2d-planar reconstruction of text.}, language = {en} } @misc{LindowRedemannFabigetal., author = {Lindow, Norbert and Redemann, Stefanie and Fabig, Gunar and M{\"u}ller-Reichert, Thomas and Prohaska, Steffen}, title = {Quantification of Three-Dimensional Spindle Architecture}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66562}, abstract = {Mitotic and meiotic spindles are microtubule-based structures to faithfully segregate chromosomes. Electron tomography is currently the method of choice to analyze the three-dimensional architecture of both types of spindles. Over the years, we have developed methods and software for automatic segmentation and stitching of microtubules in serial sections for large-scale reconstructions. Three-dimensional reconstruction of microtubules, however, is only the first step towards biological insight. The second step is the analysis of the structural data to derive measurable spindle properties. Here, we present a comprehensive set of techniques to quantify spindle parameters. These techniques provide quantitative analyses of specific microtubule classes and are applicable to a variety of tomographic reconstructions of spindles from different organisms.}, language = {en} } @article{BaumLindowHegeetal.2017, author = {Baum, Daniel and Lindow, Norbert and Hege, Hans-Christian and Lepper, Verena and Siopi, Tzulia and Kutz, Frank and Mahlow, Kristin and Mahnke, Heinz-Eberhard}, title = {Revealing hidden text in rolled and folded papyri}, series = {Applied Physics A}, volume = {123}, journal = {Applied Physics A}, number = {3}, doi = {10.1007/s00339-017-0808-6}, pages = {171}, year = {2017}, abstract = {Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds.}, language = {en} } @article{KozlikovaKroneFalketal., author = {Kozl{\´i}kov{\´a}, Barbora and Krone, Michael and Falk, Martin and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art Revisited}, series = {Computer Graphics Forum}, volume = {36}, journal = {Computer Graphics Forum}, number = {8}, doi = {10.1111/cgf.13072}, pages = {178 -- 204}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets.}, language = {en} } @article{KroneKozlikovaLindowetal.2016, author = {Krone, Michael and Kozl{\´i}kov{\´a}, Barbora and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Parulek, Julius and Hege, Hans-Christian and Viola, Ivan}, title = {Visual Analysis of Biomolecular Cavities: State of the Art}, series = {Computer Graphics Forum}, volume = {35}, journal = {Computer Graphics Forum}, number = {3}, issn = {1467-8659}, doi = {10.1111/cgf.12928}, pages = {527 -- 551}, year = {2016}, abstract = {In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field.}, language = {en} } @inproceedings{KozlikovaKroneLindowetal.2015, author = {Kozlikova, Barbora and Krone, Michael and Lindow, Norbert and Falk, Martin and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art}, series = {EuroVis 2015 STARS Proceedings}, booktitle = {EuroVis 2015 STARS Proceedings}, doi = {10.2312/eurovisstar.20151112}, pages = {61 -- 81}, year = {2015}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The report concludes with an outlook on promising and important research topics to enable further success in advancing the knowledge about interaction of molecular structures.}, language = {en} }