@article{YokoyamaShinanoTakeuchietal., author = {Yokoyama, Ryohei and Shinano, Yuji and Takeuchi, Kotaro and Wakui, Tetsuya}, title = {Operation-based time-period clustering for optimal design of energy supply systems by a hierarchical MILP method}, series = {THE 32ND INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS(ECOS 2019)}, journal = {THE 32ND INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS(ECOS 2019)}, pages = {527 -- 539}, abstract = {Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, a method of clustering periods has been proposed based on the optimal operational strategies of the systems to avoid a large decrease in the lower bound for the optimal value of the objective function by model reduction. This method has been realized only by solving the relaxed optimal design problem at the upper level in advance. The method can decrease the number of operation variables and constraints at the upper level, and thus can decrease the computation time at the upper level. Through a case study on the optimal design of a gas turbine cogeneration system, it is clarified how the proposed clustering method is effective to enhance the computation efficiency in comparison with the conventional one which clusters periods regularly in time series.}, language = {en} } @article{TakeuchiYokoyamaShinanoetal., author = {Takeuchi, Kotaro and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {エネルギー供給システムの 設計と運用の階層的関係を考慮した最適化 (運用を考慮した期間クラスタリングによるモデル縮約)}, series = {エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集}, journal = {エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {169 -- 174}, abstract = {To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) methods have been applied widely to such multi-period optimal design problems. A hierarchical MILP method has been proposed to solve the problems very efficiently. In addition, by utilizing features of the hierarchical MILP method, a method of reducing model by clustering periods has also been proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, by utilizing features of the hierarchical MILP method, a method of clustering periods is proposed based on the optimal operational strategies of energy supply systems obtained by solving the relaxed optimal design problem. As a case study, the method is applied to the optimal design of a gas turbine cogeneration system, and it is clarified that the method is effective to enhance the computation efficiency in comparison with a conventional method of clustering periods regularly.}, language = {ja} } @article{YokoyamaShinanoTakeuchietal., author = {Yokoyama, Ryohei and Shinano, Yuji and Takeuchi, Kotaro and Wakui, Tetsuya}, title = {エネルギー供給システムの設計および運用の 階層的関係を考慮した最適化 (モデル縮約のための期間クラスタリング手法の比較)}, series = {第38回エネルギー・資源学会研究発表会講演論文集}, journal = {第38回エネルギー・資源学会研究発表会講演論文集}, pages = {109 -- 114}, abstract = {Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, three clustering methods are applied to time aggregation and compared with one another in terms of the computation efficiency. Especially, the k-medoids method is applied newly in addition to the time-series and operation-based methods applied previously. A case study is conducted on the optimal design of a gas turbine cogeneration system for district energy supply. Through the study, it turns out the k-medoids method is effective to shorten the computation time as compared with the time-series method, although it is necessary to set the number of clusters artifically in both the methods. It also turns out that the operation-based method is more effective than the k-medoids method in terms of the computation efficiency even with the number of clusters set automatically.}, language = {ja} }