@misc{BestuzhevaBesanconChenetal., author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and van Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and van der Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc E. and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 8.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85309}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack.}, language = {en} } @article{PrauseHoppmannBaumDefournyetal., author = {Prause, Felix and Hoppmann-Baum, Kai and Defourny, Boris and Koch, Thorsten}, title = {The maximum diversity assortment selection problem}, series = {Mathematical Methods of Operations Research}, volume = {93}, journal = {Mathematical Methods of Operations Research}, publisher = {Mathematical Methods of Operations Research}, doi = {https://doi.org/10.1007/s00186-021-00740-2}, pages = {521 -- 554}, abstract = {In this article, we introduce the Maximum Diversity Assortment Selection Problem (MDASP), which is a generalization of the two-dimensional Knapsack Problem (2D-KP). Given a set of rectangles and a rectangular container, the goal of 2D-KP is to determine a subset of rectangles that can be placed in the container without overlapping, i.e., a feasible assortment, such that a maximum area is covered. MDASP is to determine a set of feasible assortments, each of them covering a certain minimum threshold of the container, such that the diversity among them is maximized. Thereby, diversity is defined as the minimum or average normalized Hamming distance of all assortment pairs. MDASP was the topic of the 11th AIMMS-MOPTA Competition in 2019. The methods described in this article and the resulting computational results won the contest. In the following, we give a definition of the problem, introduce a mathematical model and solution approaches, determine upper bounds on the diversity, and conclude with computational experiments conducted on test instances derived from the 2D-KP literature.}, language = {en} } @article{XuChenZhangetal., author = {Xu, Xiaofei and Chen, Ying and Zhang, Ge and Koch, Thorsten}, title = {Modeling functional time series and mixed-type predictors with partially functional autoregressions*}, series = {Journal of Business and Economic Statistics}, journal = {Journal of Business and Economic Statistics}, doi = {10.1080/07350015.2021.2011299}, pages = {1 -- 43}, abstract = {In many business and economics studies, researchers have sought to measure the dynamic dependence of curves with high-dimensional mixed-type predictors. We propose a partially functional autoregressive model (pFAR) where the serial dependence of curves is controlled by coefficient operators that are defined on a two-dimensional surface, and the individual and group effects of mixed-type predictors are estimated with a two-layer regularization. We develop an efficient estimation with the proven asymptotic properties of consistency and sparsity. We show how to choose the sieve and tuning parameters in regularization based on a forward-looking criterion. In addition to the asymptotic properties, numerical validation suggests that the dependence structure is accurately detected. The implementation of the pFAR within a real-world analysis of dependence in German daily natural gas flow curves, with seven lagged curves and 85 scalar predictors, produces superior forecast accuracy and an insightful understanding of the dynamics of natural gas supply and demand for the municipal, industry, and border nodes, respectively.}, language = {en} } @article{HenningsAndersonHoppmannBaumetal., author = {Hennings, Felix and Anderson, Lovis and Hoppmann-Baum, Kai and Turner, Mark and Koch, Thorsten}, title = {Controlling transient gas flow in real-world pipeline intersection areas}, series = {Optimization and Engineering}, volume = {22}, journal = {Optimization and Engineering}, edition = {2}, publisher = {Springer Nature}, doi = {https://doi.org/10.1007/s11081-020-09559-y}, pages = {687 -- 734}, abstract = {Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach.}, language = {en} } @article{LeKoch, author = {Le, Thi Thai and Koch, Thorsten}, title = {Instability of a tangential discontinuity surface in a three-dimensional compressible medium}, series = {Physics of Fluids}, volume = {33}, journal = {Physics of Fluids}, number = {1}, doi = {10.1063/5.0033753}, pages = {016106}, abstract = {Compressible flows appear in many natural and technological processes, for instance, the flow of natural gases in a pipe system. Thus, a detailed study of the stability of tangential velocity discontinuity in compressible media is relevant and necessary. The first early investigation in two-dimensional (2D) media was given more than 70 years ago. In this article, we continue investigating the stability in three-dimensional (3D) media. The idealized statement of this problem in an infinite spatial space was studied by Syrovatskii in 1954. However, the omission of the absolute sign of cos θ with θ being the angle between vectors of velocity and wave number in a certain inequality produced the inaccurate conclusion that the flow is always unstable for entire values of the Mach number M. First, we revisit this case to arrive at the correct conclusion, namely that the discontinuity surface is stabilized for a large Mach number with a given value of the angle θ. Next, we introduce a real finite spatial system such that it is bounded by solid walls along the flow direction. We show that the discontinuity surface is stable if and only if the dispersion relation equation has only real roots, with a large value of the Mach number; otherwise, the surface is always unstable. In particular, we show that a smaller critical value of the Mach number is required to make the flow in a narrow channel stable.}, language = {en} } @article{LeKoch, author = {Le, Thi Thai and Koch, Thorsten}, title = {Interface stability of compressible fluids in porous media}, series = {Physics of Fluids}, volume = {33}, journal = {Physics of Fluids}, number = {8}, publisher = {AIP Publishing}, doi = {10.1063/5.0059336}, pages = {084102}, abstract = {The stability of flows in porous media plays a vital role in transiting energy supply from natural gas to hydrogen, especially for estimating the usability of existing underground gas storage infrastructures. Thus, this research aims to analyze the interface stability of the tangential-velocity discontinuity between two compressible gases by using Darcy's model to include the porosity effect. The results shown in this research will be a basis for considering whether underground gas storages in porous material can be used to store hydrogen. We show the relation between the Mach number M, the viscosity \mu, and the porosity \epsilon on the stability of the interface. This interface stability affects gases' withdrawal and injection processes, thus will help us to determine the velocity which with gas can be extracted and injected into the storage effectively. By imposing solid walls along the flow direction, the critical values of these parameters regarding the stability of the interface are smaller than when considering no walls. The consideration of bounded flows approaches the problem more realistically. In particular, this analysis plays a vital role when considering two-dimensional gas flows in storages and pipes.}, language = {en} } @misc{PetkovicKochZittel, author = {Petkovic, Milena and Koch, Thorsten and Zittel, Janina}, title = {Deep learning for spatio-temporal supply and demand forecasting in natural gas transmission networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81221}, abstract = {Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21\$\\%\$. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness.}, language = {en} } @article{PetkovicKochZittel, author = {Petkovic, Milena and Koch, Thorsten and Zittel, Janina}, title = {Deep learning for spatio-temporal supply anddemand forecasting in natural gas transmission networks}, series = {Energy Science and Engineering}, journal = {Energy Science and Engineering}, doi = {https://doi.org/10.1002/ese3.932}, abstract = {Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21\%. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness.}, language = {en} } @misc{PedersenHoppmannBaumZitteletal., author = {Pedersen, Jaap and Hoppmann-Baum, Kai and Zittel, Janina and Koch, Thorsten}, title = {Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid; Technical Report}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82838}, abstract = {In the transition towards a pure hydrogen infrastructure, utilizing the existing natural gas infrastructure is a necessity. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length.}, language = {en} }