@book{AbbinkBaermannBešinovicetal.2018, author = {Abbink, Erwin and B{\"a}rmann, Andreas and Bešinovic, Nikola and Bohlin, Markus and Cacchiani, Valentina and Caimi, Gabrio and de Fabris, Stefano and Dollevoet, Twan and Fischer, Frank and F{\"u}genschuh, Armin and Galli, Laura and Goverde, Rob M.P. and Hansmann, Ronny and Homfeld, Henning and Huisman, Dennis and Johann, Marc and Klug, Torsten and T{\"o}rnquist Krasemann, Johanna and Kroon, Leo and Lamorgese, Leonardo and Liers, Frauke and Mannino, Carlo and Medeossi, Giorgio and Pacciarelli, Dario and Reuther, Markus and Schlechte, Thomas and Schmidt, Marie and Sch{\"o}bel, Anita and Sch{\"u}lldorf, Hanno and Stieber, Anke and Stiller, Sebastian and Toth, Paolo and Zimmermann, Uwe}, title = {Handbook of Optimization in the Railway Industry}, volume = {268}, editor = {Bornd{\"o}rfer, Ralf and Klug, Torsten and Lamorgese, Leonardo and Mannino, Carlo and Reuther, Markus and Schlechte, Thomas}, publisher = {Springer Verlag}, isbn = {978-3-319-72152-1}, doi = {10.1007/978-3-319-72153-8}, year = {2018}, abstract = {This book promotes the use of mathematical optimization and operations research methods in rail transportation. The editors assembled thirteen contributions from leading scholars to present a unified voice, standardize terminology, and assess the state-of-the-art. There are three main clusters of articles, corresponding to the classical stages of the planning process: strategic, tactical, and operational. These three clusters are further subdivided into five parts which correspond to the main phases of the railway network planning process: network assessment, capacity planning, timetabling, resource planning, and operational planning. Individual chapters cover: Simulation Capacity Assessment Network Design Train Routing Robust Timetabling Event Scheduling Track Allocation Blocking Shunting Rolling Stock Crew Scheduling Dispatching Delay Propagation}, language = {en} } @misc{BorndoerferFuegenschuhKlugetal.2013, author = {Bornd{\"o}rfer, Ralf and F{\"u}genschuh, Armin and Klug, Torsten and Schang, Thilo and Schlechte, Thomas and Sch{\"u}lldorf, Hanno}, title = {The Freight Train Routing Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18991}, year = {2013}, abstract = {We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that a sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of complex real-world structures are into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We give a mixed-integer nonlinear programming~(MINLP) formulation for FTRP, which is a multi-commodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities are due to an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP) by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances.}, language = {en} } @misc{BorndoerferDenissenHelleretal.2021, author = {Bornd{\"o}rfer, Ralf and Denißen, Jonas and Heller, Simon and Klug, Torsten and K{\"u}pper, Michael and Lindner, Niels and Reuther, Markus and Schlechte, Thomas and S{\"o}hlke, Andreas and Steadman, William}, title = {Microscopic Timetable Optimization for a Moving Block System}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82547}, year = {2021}, abstract = {We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality.}, language = {en} } @article{HillerKlugTuchscherer2013, author = {Hiller, Benjamin and Klug, Torsten and Tuchscherer, Andreas}, title = {An Exact Reoptimization Algorithm for the Scheduling of Elevator Groups}, journal = {Flexible Services and Manufacturing Journal}, doi = {10.1007/s10696-013-9175-6}, pages = {1 -- 24}, year = {2013}, language = {en} } @article{BorndoerferFuegenschuhKlugetal.2016, author = {Bornd{\"o}rfer, Ralf and F{\"u}genschuh, Armin and Klug, Torsten and Schang, Thilo and Schlechte, Thomas and Sch{\"u}lldorf, Hanno}, title = {The Freight Train Routing Problem for Congested Railway Networks with Mixed Traffic}, volume = {50}, journal = {Transportation Science}, number = {2}, doi = {10.1287/trsc.2015.0656}, pages = {408 -- 423}, year = {2016}, abstract = {We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that the sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. In this context, macroscopic refers to an aggregation of complex and large real-world structures into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We provide a mixed-integer nonlinear programming (MINLP) formulation for the FTRP, which is a multicommodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities originate from an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model (MILP) by piecewise linear approximation. The latter is solved by a state-of-the art MILP solver for various real-world test instances.}, language = {en} } @inproceedings{HillerKlugTuchscherer2009, author = {Hiller, Benjamin and Klug, Torsten and Tuchscherer, Andreas}, title = {Improving the performance of elevator systems using exact reoptimization algorithms}, booktitle = {Proceedings of MAPSP}, pages = {224 -- 226}, year = {2009}, language = {en} } @inproceedings{HillerKlugTuchscherer2010, author = {Hiller, Benjamin and Klug, Torsten and Tuchscherer, Andreas}, title = {Improved destination call elevator control algorithms for up peak traffic}, booktitle = {Operations Research Proceedings 2010}, publisher = {Springer}, year = {2010}, language = {en} } @article{GilgKlugMartienssenetal.2018, author = {Gilg, Brady and Klug, Torsten and Martienssen, Rosemarie and Paat, Joseph and Schlechte, Thomas and Schulz, Christof and Seymen, Senan and Tesch, Alexander}, title = {Conflict-free railway track assignment at depots}, journal = {Journal of Rail Transport Planning \& Management}, doi = {10.1016/j.jrtpm.2017.12.004}, year = {2018}, abstract = {Managing rolling stock with no passengers aboard is a critical component of railway operations. One aspect of managing rolling stock is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with a fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we show that the TAP is NP-hard and present two integer programming models for solving the TAP. We compare both models on a theoretical level. Moreover, to our knowledge, we consider the first approach that integrates track lengths along with the three most common types of parking tracks FIFO, LIFO and FREE tracks in a common model. Furthermore, to optimize against uncertainty in the arrival times of the trains we extend our models by stochastic and robust modeling techniques. We conclude by giving computational results for both models, observing that they perform well on real timetables.}, language = {en} } @incollection{Klug2018, author = {Klug, Torsten}, title = {Freight Train Routing}, volume = {268}, booktitle = {Handbook of Optimization in the Railway Industry}, publisher = {Springer International Publishing}, isbn = {978-3-319-72152-1}, doi = {10.1007/978-3-319-72153-8}, pages = {73 -- 92}, year = {2018}, abstract = {This chapter is about strategic routing of freight trains in railway transportation networks with mixed traffic. A good utilization of a railway transportation network is important since in contrast to road and air traffic the routing through railway networks is more challenging and the extension of capacities is expensive and a long-term projects. Therefore, an optimized routing of freight trains have a great potential to exploit remaining capacity since the routing has fewer restrictions compared to passenger trains. In this chapter we describe the freight train routing problem in full detail and present a mixed-integer formulation. Wo focus on a strategic level that take into account the actual immutable passenger traffic. We conclude the chapter with a case study for the German railway network.}, language = {en} } @inproceedings{FischerGrimmKlugetal.2017, author = {Fischer, Frank and Grimm, Boris and Klug, Torsten and Schlechte, Thomas}, title = {A Re-optimization Approach for Train Dispatching}, booktitle = {Operations Research Proceedings 2016}, doi = {10.1007/978-3-319-55702-1_85}, pages = {645 -- 651}, year = {2017}, abstract = {The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.}, language = {en} }