@misc{HoppmannBaumHenningsZitteletal., author = {Hoppmann-Baum, Kai and Hennings, Felix and Zittel, Janina and Gotzes, Uwe and Spreckelsen, Eva-Maria and Spreckelsen, Klaus and Koch, Thorsten}, title = {From Natural Gas towards Hydrogen - A Feasibility Study on Current Transport Network Infrastructure and its Technical Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79901}, abstract = {This study examines the usability of a real-world, large-scale natural gas transport infrastructure for hydrogen transport. We investigate whether a converted network can transport the amounts of hydrogen necessary to satisfy current energy demands. After introducing an optimization model for the robust transient control of hydrogen networks, we conduct computational experiments based on real-world demand scenarios. Using a representative network, we demonstrate that replacing each turbo compressor unit by four parallel hydrogen compressors, each of them comprising multiple serial compression stages, and imposing stricter rules regarding the balancing of in- and outflow suffices to realize transport in a majority of scenarios. However, due to the reduced linepack there is an increased need for technical and non-technical measures leading to a more dynamic network control. Furthermore, the amount of energy needed for compression increases by 364\% on average.}, language = {en} } @misc{HenningsHoppmannBaumZittel, author = {Hennings, Felix and Hoppmann-Baum, Kai and Zittel, Janina}, title = {Optimizing transient gas network control for challenging real-world instances using MIP-based heuristics}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86842}, abstract = {Optimizing the transient control of gas networks is a highly challenging task. The corresponding model incorporates the combinatorial complexity of determining the settings for the many active elements as well as the non-linear and non-convex nature of the physical and technical principles of gas transport. In this paper, we present the latest improvements of our ongoing work to solve this problem for real-world, large-scale problem instances: By adjusting our mixed-integer non-linear programming model regarding the gas compression capabilities in the network, we reflect the technical limits of the underlying units more accurately while maintaining a similar overall model size. In addition, we introduce a new algorithmic approach that is based on splitting the complexity of the problem by first finding assignments for discrete variables and then determining the continuous variables as locally optimal solution of the corresponding non-linear program. For the first task, we design multiple different heuristics based on concepts for general time-expanded optimization problems that find solutions by solving a sequence of sub-problems defined on reduced time horizons. To demonstrate the competitiveness of our approach, we test our algorithm on particularly challenging historic demand scenarios. The results show that high-quality solutions are obtained reliably within short solving times, making the algorithm well-suited to be applied at the core of time-critical industrial applications.}, language = {en} } @misc{PedersenHoppmannBaumZitteletal., author = {Pedersen, Jaap and Hoppmann-Baum, Kai and Zittel, Janina and Koch, Thorsten}, title = {Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid; Technical Report}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82838}, abstract = {In the transition towards a pure hydrogen infrastructure, utilizing the existing natural gas infrastructure is a necessity. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length.}, language = {en} }