@article{BergPloentzkeLeonhardMareketal., author = {Berg, Mascha and Pl{\"o}ntzke, Julia and Leonhard-Marek, Sabine and M{\"u}ller, Kerstin-Elisabeth and R{\"o}blitz, Susanna}, title = {A dynamic model to simulate potassium balance in dairy cows}, series = {Journal of Dairy Science}, volume = {100}, journal = {Journal of Dairy Science}, number = {12}, doi = {10.3168/jds.2016-12443}, pages = {9799 -- 9814}, abstract = {High-performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one being potassium, is indispensable for the prevention of imbalances. Potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, and it is closely related to glucose and electrolyte metabolism. In this paper, we present a dynamical model for potassium balance in lactating and nonlactating dairy cows based on ordinary differential equations. Parameter values were obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for 3 different scenarios: potassium balance in (1) nonlactating cows with varying feed intake, (2) nonlactating cows with varying potassium fraction in the diet, and (3) lactating cows with varying milk production levels. The results give insights into the short- and long-term potassium metabolism, providing an important step toward the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies.}, language = {en} } @misc{BergPloentzkeLeonhardMareketal., author = {Berg, Mascha and Pl{\"o}ntzke, Julia and Leonhard-Marek, Sabine and M{\"u}ller, Kerstin-Elisabeth and R{\"o}blitz, Susanna}, title = {A dynamic model to simulate potassium balance in dairy cows.}, issn = {1438-0064}, doi = {10.3168/jds.2016-12443}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64756}, abstract = {High performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one of them being potassium, is indispensable for the prevention of imbalances. The potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, it is closely related with the glucose and electrolyte metabolism. In this paper, we present a dynamical model for the potassium balance in lactating and non-lactating dairy cows based on ordinary differential equations. Parameter values are obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for three different scenarios: potassium balance in (i) non-lactating cows with varying feed intake, (ii) non-lactating cows with varying potassium fraction in the diet, and (iii) lactating cows with varying milk production levels. The results give insights into the short and long term potassium metabolism, providing an important step towards the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies.}, language = {en} } @misc{OmariLangePloentzkeetal., author = {Omari, Mohamed and Lange, Alexander and Pl{\"o}ntzke, Julia and R{\"o}blitz, Susanna}, title = {A Mathematical Model for the Influence of Glucose-Insulin Dynamics on the Estrous Cycle in Dairy Cows}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73475}, abstract = {Nutrition plays a crucial role in regulating reproductive hormones and follicular development in cattle. This is visible particularly during the time of negative energy balance at the onset of milk production after calving. Here, elongated periods of anovulation have been observed, resulting from alterations in luteiniz- ing hormone concentrations, likely caused by lower glucose and insulin concen- trations in the blood. The mechanisms that result in a reduced fertility are not completely understood, although a close relationship to the glucose-insulin metabolism is widely supported. Following this idea, a mathematical model of the hormonal network combining reproductive hormones and hormones that are coupled to the glucose compartments within the body of the cow was developed. The model is built on ordinary differential equations and relies on previously introduced models on the bovine estrous cycle and the glucose-insulin dynam- ics. Necessary modifications and coupling mechanisms are thoroughly discussed. Depending on the composition and the amount of food, in particular the glu- cose content in the dry matter, the model quantifies reproductive hormones and follicular development over time. Simulation results for different nutritional regimes in lactating and non-lactating dairy cows are examined and compared with experimental studies. Regarding its applicability, this work is an early attempt towards developing in silico feeding strategies and may eventually help refining and reducing animal experiments.}, language = {en} } @misc{PloentzkeBergRoeblitz, author = {Pl{\"o}ntzke, Julia and Berg, Mascha and R{\"o}blitz, Susanna}, title = {A mathematical modelling approach to the insight of dynamic networks: Potassium homeostasis and glucose-insulin in dairy cows}, series = {ADSA 2018 Annual Meeting}, volume = {101 Suppl. 2}, journal = {ADSA 2018 Annual Meeting}, edition = {Journal of Dairy Science}, publisher = {American Dairy Science Association}, pages = {226 -- 227}, abstract = {Lactating dairy cows require a particular composition of nutritional ingredients depending on their production status. The optimal supply of energy and minerals in diet, one of them potassium, is indispensable for the prevention of disbalances like hypokalemia or hypoglycaemia. Potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, and closely interacts with glucose and electrolyte metabolism, in which postpartum veterinary treatments frequently intervene. We present a mechanistic, dynamic model for potassium balance together with a glucose insulin model in non-lactating and lactating dairy cows based on ordinary differential equations. Parameter values were obtained from data of a clinical trial as well as from literature. To verify the mechanistic functioning of the model, we validate the model by comparing simulation outcomes with clinical study findings. Furthermore we perform numerical experiments and compare them with expected behaviour according to mechanistic knowledge. The results give insight into the dynamic behaviour of the network and open the way for further open questions and hypothesis to be tested.}, language = {en} } @misc{OmariPloentzkeRoeblitz, author = {Omari, Mohamed and Pl{\"o}ntzke, Julia and R{\"o}blitz, Susanna}, title = {A pharmacokinetic-pharmacodynamic model for single dose administration of Dexamethasone in dairy cows}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-75043}, abstract = {We present a mechanistic pharmacokinetic-pharmacodynamic model to simulate the effect of dexamethasone on the glucose metabolism in dairy cows. The coupling of the pharmacokinetic model to the pharmacodynamic model is based on mechanisms underlying homeostasis regulation by dexamethasone. In particular, the coupling takes into account the predominant role of dexamethasone in stimulating glucagon secretion, glycogenolysis and lipolysis and in impairing the sensitivity of cells to insulin. Simulating the effect of a single dose of dexamethasone on the physiological behaviour of the system shows that the adopted mechanisms are able to induce a temporary hyperglycemia and hyperinsulinemia, which captures the observed data in non-lactating cows. In lactating cows, the model simulations show that a single dose of dexamethasone reduces the lipolytic effect, owing to the reduction of glucose uptake by the mammary gland.}, language = {en} } @misc{PloentzkeBergStoetzeletal., author = {Pl{\"o}ntzke, Julia and Berg, Mascha and St{\"o}tzel, Claudia and R{\"o}blitz, Susanna}, title = {A systems biology approach to bovine fertility and metabolism: Development of a glucose insulin model.}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56453}, abstract = {To counteract the antagonistic relationship between milk yield and fertility in dairy cow, a deeper understanding of the underlying biological mechanisms is required. For this purpose, we study physiological networks related to reproduction and metabolism in dairy cows. We interactively develop dynamic, mechanistic models by fitting the models to experimental data and mechanistic knowledge. We have already developed models for potassium balance and hormonal regulation of fertility in the dairy cow, which will briefly be reviewed here. The main focus of this article is a glucose-insulin model currently developed by us. This model links the bovine hormonal cycle and the potassium balance to glucose and thus to energy metabolism. The models can be applied in scientific research, education, experimental planning, drug development and production on farms.}, language = {en} } @inproceedings{PloentzkeBergStoetzeletal., author = {Pl{\"o}ntzke, Julia and Berg, Mascha and St{\"o}tzel, Claudia and R{\"o}blitz, Susanna}, title = {A systems biology approach to bovine fertility and metabolism: Introduction of a glucose insulin model}, series = {15th International Symposium on Mathematical and Computational Biology, Rorkee, India}, booktitle = {15th International Symposium on Mathematical and Computational Biology, Rorkee, India}, language = {en} } @misc{StoetzelPloentzkeRoeblitz, author = {St{\"o}tzel, Claudia and Pl{\"o}ntzke, Julia and R{\"o}blitz, Susanna}, title = {Advances in modelling of the bovine estrous cycle: Administration of PGF2alpha}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12740}, number = {11-17}, abstract = {Our model of the bovine estrous cycle is a set of ordinary differential equations which generates hormone profiles of successive estrous cycles with several follicular waves per cycle. It describes the growth and decay of the follicles and the corpus luteum, as well as the change of the key substances over time. In this work we describe recent improvements of this model, including the introduction of new components, and elimination of time delays. We validate our model by showing that the simulations agree with observations from synchronization studies and with measured progesterone data after a single dose administration of synthetic prostaglandin F2alpha.}, language = {en} } @article{StoetzelPloentzkeHeuwieseretal.2012, author = {St{\"o}tzel, Claudia and Pl{\"o}ntzke, Julia and Heuwieser, Wolfgang and R{\"o}blitz, Susanna}, title = {Advances in modelling of the bovine estrous cycle: Synchronization with PGF2alpha}, series = {Theriogenology}, volume = {78}, journal = {Theriogenology}, doi = {10.1016/j.theriogenology.2012.04.017}, pages = {1415 -- 1428}, year = {2012}, language = {en} } @article{StoetzelEhrigBoeretal., author = {St{\"o}tzel, Claudia and Ehrig, Rainald and Boer, H. Marike T. and Pl{\"o}ntzke, Julia and R{\"o}blitz, Susanna}, title = {Exploration of different wave patterns in a model of the bovine estrous cycle by Fourier analysis}, series = {BIOMAT - Proceedings of the 14th International Symposium on Mathematical and Computational Biology, Bedlewo, Poland}, journal = {BIOMAT - Proceedings of the 14th International Symposium on Mathematical and Computational Biology, Bedlewo, Poland}, abstract = {Cows typically have different numbers of follicular waves during their hormonal cycle. Understanding the underlying regulations leads to insights into the reasons for declined fertility, a phenomenon that has been observed during the last decades. We present a systematic approach based on Fourier analysis to examine how parameter changes in a model of the bovine estrous cycle lead to different wave patterns. Even without any biological considerations, this allows to detect the responsible model parameters that control the type of periodicity of the solution, thus supporting experimental planning of animal scientists.}, language = {en} }