@incollection{HaynHumpolaKochetal., author = {Hayn, Christine and Humpola, Jesco and Koch, Thorsten and Schewe, Lars and Schweiger, Jonas and Spreckelsen, Klaus}, title = {Perspectives}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {After we discussed approaches to validate nominations and to verify bookings, we consider possible future research paths. This includes determining technical capacities and planning of network extensions.}, language = {en} } @incollection{HillerHumpolaLehmannetal., author = {Hiller, Benjamin and Humpola, Jesco and Lehmann, Thomas and Lenz, Ralf and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Willert, Bernhard}, title = {Computational results for validation of nominations}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {The different approaches to solve the validation of nomination problem presented in the previous chapters are evaluated computationally in this chapter. Each approach is analyzed individually, as well as the complete solvers for these problems. We demonstrate that the presented approaches can successfully solve large-scale real-world instances.}, language = {en} } @incollection{HumpolaFuegenschuhHilleretal., author = {Humpola, Jesco and F{\"u}genschuh, Armin and Hiller, Benjamin and Koch, Thorsten and Lehmann, Thomas and Lenz, Ralf and Schwarz, Robert and Schweiger, Jonas}, title = {The Specialized MINLP Approach}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {We propose an approach to solve the validation of nominations problem using mixed-integer nonlinear programming (MINLP) methods. Our approach handles both the discrete settings and the nonlinear aspects of gas physics. Our main contribution is an innovative coupling of mixed-integer (linear) programming (MILP) methods with nonlinear programming (NLP) that exploits the special structure of a suitable approximation of gas physics, resulting in a global optimization method for this type of problem.}, language = {en} }