@article{NyakaturaBaumgartenBaumetal., author = {Nyakatura, John and Baumgarten, Roxane and Baum, Daniel and Stark, Heiko and Youlatos, Dionisios}, title = {Muscle internal structure revealed by contrast-enhanced μCT and fibre recognition: The hindlimb extensors of an arboreal and a fossorial squirrel}, series = {Mammalian Biology}, volume = {99}, journal = {Mammalian Biology}, doi = {10.1016/j.mambio.2019.10.007}, pages = {71 -- 80}, abstract = {In individuals of similar body mass representing closely related species with different lifestyles, muscle architectural properties can be assumed to reflect adaptation to differing, lifestyle-related functional demands. We here employ a fiber recognition algorithm on contrast-enhanced micro-computed tomography (μCT) scans of one specimen each of an arboreal (Sciurus vulgaris) and a fossorial (Spermophilus citellus) sciuromorph rodent. The automated approach accounts for potential heterogeneity of architectural properties within a muscle by analyzing all fascicles that compose a muscle. Muscle architectural properties (volume, fascicle length, and orientation, and force-generating capacity) were quantified in 14 hindlimb (hip, knee, and ankle) extensor muscles and compared between specimens. We expected the arboreal squirrel to exhibit greater force-generating capacity and a greater capacity for length change allowing more powerful hindlimb extension. Generally and mostly matching our expectations, the S. vulgaris specimen had absolutely and relatively larger extensor muscles than the S. citellus specimen which were thus metabolically more expensive and demonstrate the relatively larger investment into powerful hindlimb extension necessary in the arboreal context. We conclude that detailed quantitative data on hindlimb muscle internal structure as was gathered here for a very limited sample further lends support to the notion that muscle architecture reflects adaptation to differential functional demands in closely related species with different locomotor behaviors and lifestyles.}, language = {en} } @article{PichtLeCalveTomaselloetal., author = {Picht, Thomas and Le Calve, Maxime and Tomasello, Rosario and Fekonja, Lucius and Gholami, Mohammad Fardin and Bruhn, Matthias and Zwick, Carola and Rabe, J{\"u}rgen P. and M{\"u}ller-Birn, Claudia and Vajkoczy, Peter and Sauer, Igor M. and Zachow, Stefan and Nyakatura, John A. and Ribault, Patricia and Pulverm{\"u}ller, Friedemann}, title = {A note on neurosurgical resection and why we need to rethink cutting}, series = {Neurosurgery}, volume = {89}, journal = {Neurosurgery}, number = {5}, doi = {10.1093/neuros/nyab326}, pages = {289 -- 291}, language = {en} } @article{EigenBaumDeanetal., author = {Eigen, Lennart and Baum, Daniel and Dean, Mason N. and Werner, Daniel and W{\"o}lfer, Jan and Nyakatura, John A.}, title = {Ontogeny of a tessellated surface: carapace growth of the longhorn cowfish Lactoria cornuta}, series = {Journal of Anatomy}, volume = {241}, journal = {Journal of Anatomy}, number = {3}, publisher = {Wiley}, doi = {10.1111/joa.13692}, pages = {565 -- 580}, abstract = {Biological armors derive their mechanical integrity in part from their geometric architectures, often involving tessellations: individual structural elements tiled together to form surface shells. The carapace of boxfish, for example, is comprised of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. In contrast to artificial armors, the boxfish exoskeleton grows with the fish; the relationship between the tessellation and the gross structure of the armor is therefore critical to sustained protection throughout growth. To clarify whether or how the boxfish tessellation is maintained or altered with age, we quantify architectural aspects of the tessellated carapace of the longhorn cowfish Lactoria cornuta through ontogeny (across nearly an order of magnitude in standard length) and in a high-throughput fashion, using high-resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual. We show that carapace growth is canalized with little variability across individuals: rather than continually adding scutes to enlarge the carapace surface, the number of scutes is surprisingly constant, with scutes increasing in volume, thickness, and especially width with age. As cowfish and their scutes grow, scutes become comparatively thinner, with the scutes at the edges (weak points in a boxy architecture) being some of the thickest and most reinforced in younger animals and thinning most slowly across ontogeny. In contrast, smaller scutes with more variable curvature were found in the limited areas of more complex topology (e.g. around fin insertions, mouth, and anus). Measurements of Gaussian and mean curvature illustrate that cowfish are essentially tessellated boxes throughout life: predominantly zero curvature surfaces comprised of mostly flat scutes, and with scutes with sharp bends used sparingly to form box edges. Since growth of a curved, tiled surface with a fixed number of tiles would require tile restructuring to accommodate the surface's changing radius of curvature, our results therefore illustrate a previously unappreciated advantage of the odd boxfish morphology: by having predominantly flat surfaces, it is the box-like body form that in fact permits a relatively straightforward growth system of this tessellated architecture (i.e. where material is added to scute edges). Our characterization of the ontogeny and maintenance of the carapace tessellation provides insights into the potentially conflicting mechanical, geometric and developmental constraints of this species, but also perspectives into natural strategies for constructing mutable tiled architectures.}, language = {en} } @inproceedings{SiqueiraRodriguesNyakaturaZachowetal., author = {Siqueira Rodrigues, Lucas and Nyakatura, John and Zachow, Stefan and Israel, Johann Habakuk}, title = {An Immersive Virtual Paleontology Application}, series = {13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022}, booktitle = {13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022}, doi = {10.1007/978-3-031-06249-0}, pages = {478 -- 481}, abstract = {Virtual paleontology studies digital fossils through data analysis and visualization systems. The discipline is growing in relevance for the evident advantages of non-destructive imaging techniques over traditional paleontological methods, and it has made significant advancements during the last few decades. However, virtual paleontology still faces a number of technological challenges, amongst which are interaction shortcomings of image segmentation applications. Whereas automated segmentation methods are seldom applicable to fossil datasets, manual exploration of these specimens is extremely time-consuming as it impractically delves into three-dimensional data through two-dimensional visualization and interaction means. This paper presents an application that employs virtual reality and haptics to virtual paleontology in order to evolve its interaction paradigms and address some of its limitations. We provide a brief overview of the challenges faced by virtual paleontology practitioners, a description of our immersive virtual paleontology prototype, and the results of a heuristic evaluation of our design.}, language = {en} } @article{LongrenEigenShubitidzeetal., author = {Longren, Luke L. and Eigen, Lennart and Shubitidze, Ani and Lieschnegg, Oliver and Baum, Daniel and Nyakatura, John A. and Hildebrandt, Thomas and Brecht, Michael}, title = {Dense Reconstruction of Elephant Trunk Musculature}, series = {Current Biology}, volume = {33}, journal = {Current Biology}, doi = {10.1016/j.cub.2023.09.007}, pages = {1 -- 8}, abstract = {The elephant trunk operates as a muscular hydrostat and is actuated by the most complex musculature known in animals. Because the number of trunk muscles is unclear, we performed dense reconstructions of trunk muscle fascicles, elementary muscle units, from microCT scans of an Asian baby elephant trunk. Muscle architecture changes markedly across the trunk. Trunk tip and finger consist of about 8,000 extraordinarily filigree fascicles. The dexterous finger consists exclusively of microscopic radial fascicles pointing to a role of muscle miniaturization in elephant dexterity. Radial fascicles also predominate (at 82\% volume) the remainder of the trunk tip and we wonder if radial muscle fascicles are of particular significance for fine motor control of the dexterous trunk tip. By volume, trunk-shaft muscles comprise one-third of the numerous, small radial muscle fascicles, two-thirds of the three subtypes of large longitudinal fascicles (dorsal longitudinals, ventral outer obliques, and ventral inner obliques), and a small fraction of transversal fascicles. Shaft musculature is laterally, but not radially, symmetric. A predominance of dorsal over ventral radial muscles and of ventral over dorsal longitudinal muscles may result in a larger ability of the shaft to extend dorsally than ventrally and to bend inward rather than outward. There are around 90,000 trunk muscle fascicles. While primate hand control is based on fine control of contraction by the convergence of many motor neurons on a small set of relatively large muscles, evolution of elephant grasping has led to thousands of microscopic fascicles, which probably outnumber facial motor neurons.}, language = {en} } @inproceedings{SiqueiraRodriguesNyakaturaZachowetal., author = {Siqueira Rodrigues, Lucas and Nyakatura, John and Zachow, Stefan and Israel, Johann Habakuk}, title = {Design Challenges and Opportunities of Fossil Preparation Tools and Methods}, series = {Proceedings of the 20th International Conference on Culture and Computer Science: Code and Materiality}, booktitle = {Proceedings of the 20th International Conference on Culture and Computer Science: Code and Materiality}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, doi = {10.1145/3623462.3623470}, abstract = {Fossil preparation is the activity of processing paleontological specimens for research and exhibition purposes. In addition to traditional mechanical extraction of fossils, preparation presently comprises non-destructive digital methods that are part of a relatively new field, namely virtual paleontology. Despite significant technological advances, both traditional and digital preparation remain cumbersome and time-consuming endeavors. However, this field has received scarce attention from a human-computer interaction perspective. The present study aims to elucidate the state-of-the-art for paleontological fossil preparation in order to determine its main challenges and start a conversation regarding opportunities for creating novel designs that tackle the field's current issues. We conducted a qualitative study involving both technical preparators and virtual paleontologists. The study was divided into two parts: First, we assembled technical preparators and paleontology researchers in a focus group session to discuss their workflows, obtain a preliminary understanding of their issues, and ideate solutions based on their counterparts' workflows. Next, we conducted a series of contextual inquiries involving direct observation and semi-structured in-depth interviews. We transcribed our recordings and examined the data through theoretical and inductive thematic analysis, clustering emerging themes and applying concepts from human-computer interaction and related fields. Our findings report on challenges faced by traditional and digital fossil preparators and potential opportunities to improve their tools and workflows. We contribute with a novel analysis of fossil preparation from an HCI perspective.}, language = {en} }