@misc{FuegenschuhHillerHumpolaetal.2011, author = {F{\"u}genschuh, Armin and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Schwarz, Robert and Schweiger, Jonas and Szab{\´o}, J{\´a}cint}, title = {Gas Network Topology Optimization for Upcoming Market Requirements}, doi = {10.1109/EEM.2011.5953035}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12348}, number = {11-09}, year = {2011}, abstract = {Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.}, language = {en} } @article{PfetschFuegenschuhGeissleretal.2014, author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, journal = {Optimization Methods and Software}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2014.888426}, year = {2014}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.}, language = {en} } @inproceedings{FuegenschuhHillerHumpolaetal.2011, author = {F{\"u}genschuh, Armin and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Schwarz, Robert and Schweiger, Jonas and Szabo, Jacint}, title = {Gas Network Topology Optimization for Upcoming Market Requirements}, booktitle = {International Conference on the European Energy Market (EEM)}, doi = {10.1109/EEM.2011.5953035}, pages = {346 -- 351}, year = {2011}, abstract = {Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.}, language = {en} } @article{FuegenschuhGeisslerGollmeretal.2013, author = {F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Gollmer, Ralf and Hayn, Christine and Henrion, Ren{\´e} and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Mirkov, Radoslava and Morsi, Antonio and R{\"o}misch, Werner and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Willert, Bernhard}, title = {Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets}, volume = {5}, journal = {Energy Systems}, number = {3}, publisher = {Springer Berlin Heidelberg}, address = {Berlin}, doi = {10.1007/s12667-013-0099-8}, pages = {449 -- 473}, year = {2013}, abstract = {The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network's capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations.}, language = {en} } @misc{HumpolaFuegenschuhLehmann2013, author = {Humpola, Jesco and F{\"u}genschuh, Armin and Lehmann, Thomas}, title = {A Primal Heuristic for MINLP based on Dual Information}, issn = {1438-0064}, doi = {10.1007/s13675-014-0029-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43110}, year = {2013}, abstract = {We present a novel heuristic algorithm to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network's capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer approximation and spatial branching. At certain nodes of the branching tree, we compute a KKT point for a nonlinear relaxation. Based on the information from the KKT point we alter some of the integer variables in a locally promising way. We describe this heuristic for general MINLPs and then show how to tailor the heuristic to exploit our problem-specific structure. On a test set of real-world instances, we are able to increase the chance of identifying feasible solutions by some order of magnitude compared to standard MINLP heuristics that are already built in the general-purpose MINLP solver SCIP.}, language = {en} } @article{HumpolaFuegenschuhKoch2016, author = {Humpola, Jesco and F{\"u}genschuh, Armin and Koch, Thorsten}, title = {Valid inequalities for the topology optimization problem in gas network design}, volume = {38}, journal = {OR Spectrum}, number = {3}, publisher = {Springer}, address = {Berlin Heidelberg}, doi = {https://doi.org/10.1007/s00291-015-0390-2}, pages = {597 -- 631}, year = {2016}, abstract = {One quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euro per km extending the European pipeline network is already a multi-billion Euro business. Therefore, automatic planning tools that support the decision process are desired. Unfortunately, current mathematical methods are not capable of solving the arising network design problems due to their size and complexity. In this article, we will show how to apply optimization methods that can converge to a proven global optimal solution. By introducing a new class of valid inequalities that improve the relaxation of our mixed-integer nonlinear programming model, we are able to speed up the necessary computations substantially.}, language = {en} } @article{HumpolaJoormannOucherifetal.2015, author = {Humpola, Jesco and Joormann, Imke and Oucherif, Djamal and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schwarz, Robert}, title = {GasLib - A Library of Gas Network Instances}, journal = {Optimization Online}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57950}, year = {2015}, abstract = {The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library.}, language = {en} } @inproceedings{MartinGeisslerHeynetal.2011, author = {Martin, Alexander and Geißler, Bj{\"o}rn and Heyn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, booktitle = {Optimierung in der Energiewirtschaft}, publisher = {VDI-Verlag, D{\"u}sseldorf}, pages = {105 -- 114}, year = {2011}, language = {en} } @article{HumpolaFuegenschuh2015, author = {Humpola, Jesco and F{\"u}genschuh, Armin}, title = {Convex reformulations for solving a nonlinear network design problem}, volume = {62}, journal = {Computational Optimization and Applications}, number = {3}, publisher = {Springer US}, doi = {10.1007/s10589-015-9756-2}, pages = {717 -- 759}, year = {2015}, abstract = {We consider a nonlinear nonconvex network design problem that arises, for example, in natural gas or water transmission networks. Given is such a network with active and passive components, that is, valves, compressors, control valves (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes in the network. The active elements are associated with costs when used. Besides flow conservation constraints in the nodes, the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is to compute a cost minimal setting of the active components and numerical values for the flow and node potentials. We examine different (convex) relaxations for a subproblem of the design problem and benefit from them within a branch-and-bound approach. We compare different approaches based on nonlinear optimization numerically on a set of test instances.}, language = {en} } @incollection{HaynHumpolaKochetal.2015, author = {Hayn, Christine and Humpola, Jesco and Koch, Thorsten and Schewe, Lars and Schweiger, Jonas and Spreckelsen, Klaus}, title = {Perspectives}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, year = {2015}, abstract = {After we discussed approaches to validate nominations and to verify bookings, we consider possible future research paths. This includes determining technical capacities and planning of network extensions.}, language = {en} }