@misc{YuekselErguenZittelWangetal., author = {Yueksel-Erguen, Inci and Zittel, Janina and Wang, Ying and Hennings, Felix and Koch, Thorsten}, title = {Lessons learned from gas network data preprocessing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78262}, abstract = {The German high-pressure natural gas transport network consists of thousands of interconnected elements spread over more than 120,000 km of pipelines built during the last 100 years. During the last decade, we have spent many person-years to extract consistent data out of the available sources, both public and private. Based on two case studies, we present some of the challenges we encountered. Preparing consistent, high-quality data is surprisingly hard, and the effort necessary can hardly be overestimated. Thus, it is particularly important to decide which strategy regarding data curation to adopt. Which precision of the data is necessary? When is it more efficient to work with data that is just sufficiently correct on average? In the case studies we describe our experiences and the strategies we adopted to deal with the obstacles and to minimize future effort. Finally, we would like to emphasize that well-compiled data sets, publicly available for research purposes, provide the grounds for building innovative algorithmic solutions to the challenges of the future.}, language = {en} } @article{HoppmannBaumHenningsZitteletal., author = {Hoppmann-Baum, Kai and Hennings, Felix and Zittel, Janina and Gotzes, Uwe and Spreckelsen, Eva-Maria and Spreckelsen, Klaus and Koch, Thorsten}, title = {An Optimization Approach for the Transient Control of Hydrogen Transport Networks}, series = {Mathematical Methods of Operations Research}, journal = {Mathematical Methods of Operations Research}, number = {Special Issue on Energy Networks}, language = {en} } @misc{HoppmannBaumHenningsZitteletal., author = {Hoppmann-Baum, Kai and Hennings, Felix and Zittel, Janina and Gotzes, Uwe and Spreckelsen, Eva-Maria and Spreckelsen, Klaus and Koch, Thorsten}, title = {From Natural Gas towards Hydrogen - A Feasibility Study on Current Transport Network Infrastructure and its Technical Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79901}, abstract = {This study examines the usability of a real-world, large-scale natural gas transport infrastructure for hydrogen transport. We investigate whether a converted network can transport the amounts of hydrogen necessary to satisfy current energy demands. After introducing an optimization model for the robust transient control of hydrogen networks, we conduct computational experiments based on real-world demand scenarios. Using a representative network, we demonstrate that replacing each turbo compressor unit by four parallel hydrogen compressors, each of them comprising multiple serial compression stages, and imposing stricter rules regarding the balancing of in- and outflow suffices to realize transport in a majority of scenarios. However, due to the reduced linepack there is an increased need for technical and non-technical measures leading to a more dynamic network control. Furthermore, the amount of energy needed for compression increases by 364\% on average.}, language = {en} } @article{PetkovicChenGamrathetal., author = {Petkovic, Milena and Chen, Ying and Gamrath, Inken and Gotzes, Uwe and Hadjidimitrou, Natalia Selini and Zittel, Janina and Xu, Xiaofei and Koch, Thorsten}, title = {A hybrid approach for high precision prediction of gas flows}, series = {Energy Systems}, volume = {13}, journal = {Energy Systems}, doi = {10.1007/s12667-021-00466-4}, pages = {383 -- 408}, abstract = {About 23\% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition ("Energiewende"). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes.}, language = {en} } @inproceedings{PetkovicZakiyevaZittel, author = {Petkovic, Milena and Zakiyeva, Nazgul and Zittel, Janina}, title = {Statistical Analysis and Modeling for Detecting Regime Changes in Gas Nomination Time Series}, series = {Operations Research Proceedings 2021. OR 2021}, booktitle = {Operations Research Proceedings 2021. OR 2021}, publisher = {Springer, Cham}, doi = {10.1007/978-3-031-08623-6_29}, pages = {188 -- 193}, abstract = {As a result of the legislation for gas markets introduced by the European Union in 2005, separate independent companies have to conduct the transport and trading of natural gas. The current gas market of Germany, which has a market value of more than 54 billion USD, consists of Transmission System Operators (TSO), network users, and traders. Traders can nominate a certain amount of gas anytime and anywhere in the network. Such unrestricted access for the traders, on the other hand, increase the uncertainty in the gas supply management. Some customers' behaviors may cause abrupt structural changes in gas flow time series. In particular, it is a challenging task for the TSO operators to predict gas nominations 6 to 10 h-ahead. In our study, we aim to investigate the regime changes in time series of nominations to predict the 6 to 10 h-ahead of gas nominations.}, language = {en} } @inproceedings{PedersenHoppmannBaumZitteletal., author = {Pedersen, Jaap and Hoppmann-Baum, Kai and Zittel, Janina and Koch, Thorsten}, title = {Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid}, series = {Operations Research Proceedings 2021}, booktitle = {Operations Research Proceedings 2021}, doi = {https://doi.org/10.1007/978-3-031-08623-6_28}, pages = {182 -- 187}, abstract = {In the transition towards a pure hydrogen infrastructure, repurposing the existing natural gas infrastructure is considered. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length.}, language = {en} } @misc{HenningsHoppmannBaumZittel, author = {Hennings, Felix and Hoppmann-Baum, Kai and Zittel, Janina}, title = {Optimizing transient gas network control for challenging real-world instances using MIP-based heuristics}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86842}, abstract = {Optimizing the transient control of gas networks is a highly challenging task. The corresponding model incorporates the combinatorial complexity of determining the settings for the many active elements as well as the non-linear and non-convex nature of the physical and technical principles of gas transport. In this paper, we present the latest improvements of our ongoing work to solve this problem for real-world, large-scale problem instances: By adjusting our mixed-integer non-linear programming model regarding the gas compression capabilities in the network, we reflect the technical limits of the underlying units more accurately while maintaining a similar overall model size. In addition, we introduce a new algorithmic approach that is based on splitting the complexity of the problem by first finding assignments for discrete variables and then determining the continuous variables as locally optimal solution of the corresponding non-linear program. For the first task, we design multiple different heuristics based on concepts for general time-expanded optimization problems that find solutions by solving a sequence of sub-problems defined on reduced time horizons. To demonstrate the competitiveness of our approach, we test our algorithm on particularly challenging historic demand scenarios. The results show that high-quality solutions are obtained reliably within short solving times, making the algorithm well-suited to be applied at the core of time-critical industrial applications.}, language = {en} } @misc{YuekselErguenMostWyrwolletal., author = {Yueksel-Erguen, Inci and Most, Dieter and Wyrwoll, Lothar and Schmitt, Carlo and Zittel, Janina}, title = {Modeling the transition of the multimodal pan-European energy system including an integrated analysis of electricity and gas transport}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-87774}, abstract = {The European energy system has been through a fundamental transformation since the Paris Agreement to reduce greenhouse gas emissions. The transition involves several energy-generating and consuming sectors emphasizing sector coupling. The increase in the share of renewable energy sources has revealed the need for flexibility in the electri city grid. Thus, holistic planning of pathways towards decarbonized energy systems also involves assessing the gas infrastructure to provide such a flexibility and support for the security of supply. In this paper, we propose a workflow to investigate such optimal energy transition pathways considering sector coupling. This workflow involves an integrated operational analysis of the electricity market, its transmission grid, and the gas grid in high spatio-temporal resolution. In a case study on a pan-European scale between 2020-2050, we show that carbon neutrality can be reached within feasible additional costs and in time. However, the manifestation of the potential pathways strongly depends on political and technological constraints. Sector coupling acts as an enabler of cross-border cooperation to achieve both, decarbonization and security of supply.}, language = {en} } @article{PedersenSpreckelsenGotzesetal., author = {Pedersen, Jaap and Spreckelsen, Klaus and Gotzes, Uwe and Zittel, Janina and Koch, Thorsten}, title = {Beimischung von Wasserstoff zum Erdgas: Eine Kapazit{\"a}tsstudie des deutschen Gasnetzes}, series = {gwf Gas + Energie}, journal = {gwf Gas + Energie}, edition = {06/2023}, publisher = {Vulkan Verlag}, abstract = {Die europaische Gasinfrastruktur wird disruptiv in ein zukunftiges dekarbonisiertes Energiesystem ver{\"a}ndert; ein Prozess, der angesichts der j{\"u}ngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, tr{\"a}gt zur Erh{\"o}hung der {\"o}ffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Beitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualit{\"a}t analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten gen ̈ugend Kapazit{\"a}t bietet, um f{\"u}r einen großen Teil der bis 2030 geplanten Erzeugungskapazit{\"a}t f{\"u}r gr{\"u}nen Wasserstoff als garantierter Abnehmer zu dienen.}, language = {de} } @article{PedersenSpreckelsenGotzesetal., author = {Pedersen, Jaap and Spreckelsen, Klaus and Gotzes, Uwe and Zittel, Janina and Koch, Thorsten}, title = {Beimischung von Wasserstoff zum Erdgas: Eine Kapazit{\"a}tsstudie des deutschen Gasnetzes}, series = {3R - Fachzeitschrift f{\"u}r Rohrleitungssystem}, journal = {3R - Fachzeitschrift f{\"u}r Rohrleitungssystem}, number = {06/2023}, pages = {70 -- 75}, abstract = {Die europ{\"a}ische Gasinfrastruktur wird disruptiv in ein zuk{\"u}nftiges dekarbonisiertes Energiesystem ver{\"a}ndert; ein Prozess, der angesichts der j{\"u}ngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, tr{\"a}gt zur Erh{\"o}hung der {\"o}ffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Fachbeitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualit{\"a}t analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten gen{\"u}gend Kapazit{\"a}t bietet, um f{\"u}r einen großen Teil der bis 2030 geplanten Erzeugungskapazit{\"a}t f{\"u}r gr{\"u}nen Wasserstoff als garantierter Abnehmer zu dienen.}, language = {de} }