@article{NiemannKlusSchuette, author = {Niemann, Jan-Hendrik and Klus, Stefan and Sch{\"u}tte, Christof}, title = {Data-driven model reduction of agent-based systems using the Koopman generator}, series = {PLOS ONE}, volume = {16}, journal = {PLOS ONE}, number = {5}, doi = {10.1371/journal.pone.0250970}, abstract = {The dynamical behavior of social systems can be described by agent-based models. Although single agents follow easily explainable rules, complex time-evolving patterns emerge due to their interaction. The simulation and analysis of such agent-based models, however, is often prohibitively time-consuming if the number of agents is large. In this paper, we show how Koopman operator theory can be used to derive reduced models of agent-based systems using only simulation or real-world data. Our goal is to learn coarse-grained models and to represent the reduced dynamics by ordinary or stochastic differential equations. The new variables are, for instance, aggregated state variables of the agent-based model, modeling the collective behavior of larger groups or the entire population. Using benchmark problems with known coarse-grained models, we demonstrate that the obtained reduced systems are in good agreement with the analytical results, provided that the numbers of agents is sufficiently large.}, language = {en} } @misc{NiemannSchuetteKlus, author = {Niemann, Jan-Hendrik and Sch{\"u}tte, Christof and Klus, Stefan}, title = {Simulation data: Data-driven model reduction of agent-based systems using the Koopman generator}, series = {PLOS ONE}, volume = {16}, journal = {PLOS ONE}, number = {5}, doi = {http://doi.org/10.5281/zenodo.4522119}, language = {en} } @article{KlusNueskePeitzetal., author = {Klus, Stefan and N{\"u}ske, Feliks and Peitz, Sebastian and Niemann, Jan-Hendrik and Clementi, Cecilia and Sch{\"u}tte, Christof}, title = {Data-driven approximation of the Koopman generator: Model reduction, system identification, and control}, series = {Physica D: Nonlinear Phenomena}, volume = {406}, journal = {Physica D: Nonlinear Phenomena}, doi = {10.1016/j.physd.2020.132416}, language = {en} } @article{NiemannKlusConradetal., author = {Niemann, Jan-Hendrik and Klus, Stefan and Conrad, Natasa Djurdjevac and Sch{\"u}tte, Christof}, title = {Koopman-Based Surrogate Models for Multi-Objective Optimization of Agent-Based Systems}, series = {Physica D: Nonlinear Phenomena}, volume = {460}, journal = {Physica D: Nonlinear Phenomena}, doi = {https://doi.org/10.1016/j.physd.2024.134052}, pages = {134052}, abstract = {Agent-based models (ABMs) provide an intuitive and powerful framework for studying social dynamics by modeling the interactions of individuals from the perspective of each individual. In addition to simulating and forecasting the dynamics of ABMs, the demand to solve optimization problems to support, for example, decision-making processes naturally arises. Most ABMs, however, are non-deterministic, high-dimensional dynamical systems, so objectives defined in terms of their behavior are computationally expensive. In particular, if the number of agents is large, evaluating the objective functions often becomes prohibitively time-consuming. We consider data-driven reduced models based on the Koopman generator to enable the efficient solution of multi-objective optimization problems involving ABMs. In a first step, we show how to obtain data-driven reduced models of non-deterministic dynamical systems (such as ABMs) that depend on potentially nonlinear control inputs. We then use them in the second step as surrogate models to solve multi-objective optimal control problems. We first illustrate our approach using the example of a voter model, where we compute optimal controls to steer the agents to a predetermined majority, and then using the example of an epidemic ABM, where we compute optimal containment strategies in a prototypical situation. We demonstrate that the surrogate models effectively approximate the Pareto-optimal points of the ABM dynamics by comparing the surrogate-based results with test points, where the objectives are evaluated using the ABM. Our results show that when objectives are defined by the dynamic behavior of ABMs, data-driven surrogate models support or even enable the solution of multi-objective optimization problems.}, language = {en} }