@article{AlhaddadFoerstnerGrothetal., author = {Alhaddad, Samer and F{\"o}rstner, Jens and Groth, Stefan and Gr{\"u}newald, Daniel and Grynko, Yevgen and Hannig, Frank and Kenter, Tobias and Pfreundt, Franz-Josef and Plessl, Christian and Schotte, Merlind and Steinke, Thomas and Teich, J{\"u}rgen and Weiser, Martin and Wende, Florian}, title = {HighPerMeshes - A Domain-Specific Language for Numerical Algorithms on Unstructured Grids}, series = {Euro-Par 2020: Parallel Processing Workshops.}, journal = {Euro-Par 2020: Parallel Processing Workshops.}, publisher = {Springer}, doi = {10.1007/978-3-030-71593-9_15}, pages = {185 -- 196}, abstract = {Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPer-Meshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell's equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster.}, language = {en} }