@misc{AthanasiadisRambauSantos, author = {Athanasiadis, Christos A. and Rambau, J{\"o}rg and Santos, Francisco}, title = {The Generalized Baues Problem for Cyclic Polytopes II}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3862}, number = {SC-98-43}, abstract = {Given an affine surjection of polytopes \$\pi: P \to Q\$, the Generalized Baues Problem asks whether the poset of all proper polyhedral subdivisions of \$Q\$ which are induced by the map \$\pi\$ has the homotopy type of a sphere. We extend earlier work of the last two authors on subdivisions of cyclic polytopes to give an affirmative answer to the problem for the natural surjections between cyclic polytopes \$\pi: C(n,d') \to C(n,d)\$ for all \$1 \leq d < d' < n\$.}, language = {en} } @misc{HuberRambauSantos, author = {Huber, Birkett and Rambau, J{\"o}rg and Santos, Francisco}, title = {The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3874}, number = {SC-98-44}, abstract = {In 1994, Sturmfels gave a polyhedral version of the Cayley Trick of elimination theory: he established an order-preserving bijection between the posets of \emph{coherent} mixed subdivisions of a Minkowski sum \$\mathcal{A}_1+\cdots+\mathcal{A}_r\$ of point configurations and of \emph{coherent} polyhedral subdivisions of the associated Cayley embedding \$\mathcal{C}(\mathcal{A}_1,\dots,\mathcal{A}_r)\$. In this paper we extend this correspondence in a natural way to cover also \emph{non-coherent} subdivisions. As an application, we show that the Cayley Trick combined with results of Santos on subdivisions of Lawrence polytopes provides a new independent proof of the Bohne-Dress Theorem on zonotopal tilings. This application uses a combinatorial characterization of lifting subdivisions, also originally proved by Santos.}, language = {en} } @misc{GroetschelKrumkeRambau, author = {Gr{\"o}tschel, Martin and Krumke, Sven and Rambau, J{\"o}rg}, title = {Wo bleibt der Aufzug?}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4175}, number = {SC-99-29}, abstract = {Dieser Artikel gibt eine allgemeinverst{\"a}ndliche Einf{\"u}hrung in die spezielle Problematik kombinatorischer Online-Problem am Beispiel der Fahrstuhlsteuerung.}, language = {de} } @misc{HauptmeierKrumkeRambauetal., author = {Hauptmeier, Dietrich and Krumke, Sven and Rambau, J{\"o}rg and Wirth., Hans-Christoph}, title = {Euler is Standing in Line}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3947}, number = {SC-99-06}, abstract = {In this paper we study algorithms for ``Dial-a-Ride'' transportation problems. In the basic version of the problem we are given transportation jobs between the vertices of a graph and the goal is to find a shortest transportation that serves all the jobs. This problem is known to be NP-hard even on trees. We consider the extension when precedence relations between the jobs with the same source are given. Our results include a polynomial time algorithm on paths and an approximation algorithm on general graphs with a performance of~\$9/4\$. For trees we improve the performance to~\$5/3\$.}, language = {en} } @inproceedings{AscheuerGroetschelKrumkeetal.1999, author = {Ascheuer, Norbert and Gr{\"o}tschel, Martin and Krumke, Sven and Rambau, J{\"o}rg}, title = {Combinatorial Online Optimization}, series = {Operations Research Proceedings 1998. Selected Papers of the International Conference on Operations Research Zurich, August 31 - September 3, 1998}, booktitle = {Operations Research Proceedings 1998. Selected Papers of the International Conference on Operations Research Zurich, August 31 - September 3, 1998}, editor = {Kall, Peter and L{\"u}thi, Hans-Jakob}, publisher = {Springer}, pages = {21 -- 37}, year = {1999}, language = {en} } @article{GroetschelKrumkeRambau1999, author = {Gr{\"o}tschel, Martin and Krumke, Sven and Rambau, J{\"o}rg}, title = {Wo bleibt der Aufzug?}, series = {OR News}, volume = {5}, journal = {OR News}, pages = {11 -- 13}, year = {1999}, language = {en} } @misc{HauptmeierKrumkeRambau, author = {Hauptmeier, Dietrich and Krumke, Sven and Rambau, J{\"o}rg}, title = {The Online Dial-a-Ride Problem under Reasonable Load}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3961}, number = {SC-99-08}, abstract = {In this paper, we analyze algorithms for the online dial-a-ride problem with request sets that fulfill a certain worst-case restriction: roughly speaking, a set of requests for the online dial-a-ride problem is reasonable if the requests that come up in a sufficiently large time period can be served in a time period of at most the same length. This new notion is a stability criterion implying that the system is not overloaded. The new concept is used to analyze the online dial-a-ride problem for the minimization of the maximal resp.\ average flow time. Under reasonable load it is possible to distinguish the performance of two particular algorithms for this problem, which seems to be impossible by means of classical competitive analysis.}, language = {en} } @misc{GroetschelHauptmeierKrumkeetal., author = {Gr{\"o}tschel, Martin and Hauptmeier, Dietrich and Krumke, Sven and Rambau, J{\"o}rg}, title = {Simulation Studies for the Online-Dial-a-Ride Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3976}, number = {SC-99-09}, abstract = {In a large distribution center of Herlitz AG, Berlin, we invesigated the elevator subsystem of the fully automated pallet transportation system. Each elevator may carry one pallet and has to serve eight levels. The goal is to minimize the average resp.\ the maximum flow time. The variants of this elevator control problem have been subject of recent theoretical research and are known as online-dial-a-ride problems. In this paper we investigate several online algorithms for several versions of online-dial-a-ride problems by means of a simulation program, developed on the basis of the simulation library AMSEL. We draw statistics from samples of randomly generated data providing for different load situations. Moreover, we provide preliminary studies with real production data for a system of five elevators connected by a conveyor circuit, as can be found at the Herlitz plant. We show which algorithms are best under certain load situations and which lead to break downs under particular circumstances.}, language = {en} }