@inproceedings{KuhnEngelkeFlatkenetal., author = {Kuhn, Alexander and Engelke, Wito and Flatken, Markus and Hege, Hans-Christian and Hotz, Ingrid}, title = {Topology-based Analysis for Multimodal Atmospheric Data of Volcano Eruptions}, series = {Topological Methods in Data Analysis and Visualization IV}, booktitle = {Topological Methods in Data Analysis and Visualization IV}, publisher = {Springer}, address = {Cham, Schweiz}, doi = {10.1007/978-3-319-44684-4_2}, pages = {35 -- 50}, language = {en} } @article{KastenReininghausHotzetal.2016, author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans-Christian and Noack, Bernd and Daviller, Guillaume and Morzyński, Marek}, title = {Acceleration feature points of unsteady shear flows}, series = {Archives of Mechanics}, volume = {68}, journal = {Archives of Mechanics}, number = {1}, pages = {55 -- 80}, year = {2016}, abstract = {A framework is proposed for extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance. The minima of the acceleration magnitude, i.e. a superset of the acceleration zeros, are extracted and discriminated into vortices and saddle points --- based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These features are tracked in time with a robust algorithm for tracking features. Thus a space-time hierarchy of the minima is built and vortex merging events are detected. The acceleration feature extraction strategy is applied to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of pressure field and minima of λ2.}, language = {en} } @misc{KuhnEngelkeFlatkenetal., author = {Kuhn, Alexander and Engelke, Wito and Flatken, Markus and Hege, Hans-Christian and Hotz, Ingrid}, title = {Topology-based Analysis for Multimodal Atmospheric Data of Volcano Eruptions}, issn = {1438-0064}, doi = {10.1007/978-3-319-44684-4_2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57043}, abstract = {Many scientific applications deal with data from a multitude of different sources, e.g., measurements, imaging and simulations. Each source provides an additional perspective on the phenomenon of interest, but also comes with specific limitations, e.g. regarding accuracy, spatial and temporal availability. Effectively combining and analyzing such multimodal and partially incomplete data of limited accuracy in an integrated way is challenging. In this work, we outline an approach for an integrated analysis and visualization of the atmospheric impact of volcano eruptions. The data sets comprise observation and imaging data from satellites as well as results from numerical particle simulations. To analyze the clouds from the volcano eruption in the spatiotemporal domain we apply topological methods. Extremal structures reveal structures in the data that support clustering and comparison. We further discuss the robustness of those methods with respect to different properties of the data and different parameter setups. Finally we outline open challenges for the effective integrated visualization using topological methods.}, language = {en} } @misc{KastenReininghausHotzetal., author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans-Christian and Noack, Bernd and Daviller, Guillaume and Morzyński, Marek}, title = {Acceleration feature points of unsteady shear flows}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-58397}, abstract = {A framework is proposed for extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance. The minima of the acceleration magnitude, i.e. a superset of the acceleration zeros, are extracted and discriminated into vortices and saddle points --- based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These features are tracked in time with a robust algorithm for tracking features. Thus a space-time hierarchy of the minima is built and vortex merging events are detected. The acceleration feature extraction strategy is applied to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of pressure field and minima of λ2.}, language = {en} } @inproceedings{EngelkeKuhnFlatkenetal.2015, author = {Engelke, Wito and Kuhn, Alexander and Flatken, Markus and Chen, Fang and Hege, Hans-Christian and Gerndt, Andreas and Hotz, Ingrid}, title = {Atmospheric Impact of Volcano Eruptions}, series = {Proceedings IEEE SciVis 2014}, booktitle = {Proceedings IEEE SciVis 2014}, year = {2015}, abstract = {The analysis of data that captures volcanic eruptions and their atmospheric aftermath plays an important role for domain experts to gain a deeper understanding of the volcanic eruption and their consequences for atmosphere, climate and air traffic. Thereby, one major challenge is to extract and combine the essential information, which is spread over various, mostly sparse data sources. This requires a careful integration of each data set with its strength and limitations. The sparse, but more reliable measurement data is mainly used to calibrate the more dense simulation data. This work combines a collection of visualization approaches into an exploitative framework. The goal is to support the domain experts to build a complete picture of the situation. But it is also important to understand the individual data sources, the wealth of their information and the quality of the simulation results. All presented methods are designed for direct interaction with the data from different perspectives rather than the sole generation of some final images.}, language = {en} } @inproceedings{KratzSchoeneichZobeletal., author = {Kratz, Andrea and Sch{\"o}neich, Marc and Zobel, Valentin and Burgeth, Bernhard and Scheuermann, Gerik and Hotz, Ingrid and Stommel, Markus}, title = {Tensor Visualization Driven Mechanical Component Design}, series = {Proc. IEEE Pacific Visualization Symposium 2014}, booktitle = {Proc. IEEE Pacific Visualization Symposium 2014}, doi = {10.1109/PacificVis.2014.51}, pages = {145 -- 152}, language = {en} } @article{SchoeneichStommelKratzetal., author = {Sch{\"o}neich, Marc and Stommel, Markus and Kratz, Andrea and Zobel, Valentin and Scheuermann, Gerik and Hotz, Ingrid and Burgeth, Bernhard}, title = {Optimization strategy for the design of ribbed plastic components}, series = {International Journal of Plastics Technology}, journal = {International Journal of Plastics Technology}, number = {10}, pages = {160 -- 175}, language = {en} } @article{KratzBaumHotz2013, author = {Kratz, Andrea and Baum, Daniel and Hotz, Ingrid}, title = {Anisotropic Sampling of Planar and Two-Manifold Domains for Texture Generation and Glyph Distribution}, series = {Transactions on Visualization and Computer Graphics (TVCG)}, volume = {19}, journal = {Transactions on Visualization and Computer Graphics (TVCG)}, doi = {10.1109/TVCG.2013.83}, pages = {1782 -- 1794}, year = {2013}, language = {en} } @article{KratzAuerStommeletal.2013, author = {Kratz, Andrea and Auer, Cornelia and Stommel, Markus and Hotz, Ingrid}, title = {Visualization and Analysis of Second-Order Tensors: Moving Beyond the Symmetric Positive-Definite Case}, series = {Computer Graphics Forum - State of the Art Reports}, volume = {1}, journal = {Computer Graphics Forum - State of the Art Reports}, doi = {10.1111/j.1467-8659.2012.03231.x}, pages = {49 -- 74}, year = {2013}, language = {en} } @misc{ZobelReininghausHotz2013, author = {Zobel, Valentin and Reininghaus, Jan and Hotz, Ingrid}, title = {Visualization of Two-Dimensional Symmetric Tensor Fields Using the Heat Kernel Signature}, series = {Topological Methods in Data Analysis and Visualization III}, journal = {Topological Methods in Data Analysis and Visualization III}, address = {Davis, CA, USA}, pages = {249 -- 262}, year = {2013}, language = {en} }