@inproceedings{YokoyamaKamadaShinanoetal.2020, author = {Yokoyama, Ryohei and Kamada, Hiroki and Shinano, Yuji and Wakui, Tetsuya}, title = {A Hierarchical Optimization Approach to Robust Design of Energy Supply Systems Based on a Mixed-Integer Linear Model}, series = {Conference}, booktitle = {Conference}, pages = {601 -- 613}, year = {2020}, abstract = {In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchi- cal mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy sup- ply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret cri- terion, and considering relationships among integer design variables, uncertain energy demands, and inte- ger and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Since these different types of optimization problems are difficult to solve even using commercial MILP solvers, they are solved by applying a hierarchi- cal MILP method developed for ordinary optimal design problems with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified.}, language = {en} } @article{YokoyamaKamadaShinanoetal., author = {Yokoyama, Ryohei and Kamada, Hiroki and Shinano, Yuji and Wakui, Tetsuya}, title = {A hierarchical optimization approach to robust design of energy supply systems based on a mixed-integer linear model}, series = {Energy}, volume = {229}, journal = {Energy}, doi = {https://doi.org/10.1016/j.energy.2021.120343}, abstract = {In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchical mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy supply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering relationships among integer design variables, uncertain energy demands, and integer and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Different types of optimization problems are solved by applying a hierarchical MILP method developed for ordinary optimal design problems without and with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified.}, language = {en} } @article{KamadaYokoyamaShinanoetal., author = {Kamada, Hiroki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {混合整数線形モデルによる エネルギー供給システムのロバスト最適設計 (階層的最適化手法の適用)}, series = {エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集}, journal = {エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {163 -- 168}, abstract = {A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, mixed-integer linear programming method in consideration of the hierarchical relationship between design and operation variables is applied to parts of the robust optimal design method which take long computation times to solve problems efficiently. In a case study, this revised method is applied to the robust optimal design of a cogeneration system with a simple configuration, and the validity and effectiveness of the method are ascertained.}, language = {ja} } @article{KamadaYokoyamaShinanoetal., author = {Kamada, Hiroki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {階層的最適化手法を用いた エネルギー供給システムのロバスト性評価}, series = {日本機械学会関西支部第95期定時総会講演会講演論文集}, journal = {日本機械学会関西支部第95期定時総会講演会講演論文集}, pages = {1 -- 4}, abstract = {A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed-integer linear model for constituent equipment. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, a hierarchical optimization method is applied to two types of optimization problems for evaluating robustness to solve them efficiently. In a case study, the proposed method is applied to a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained.}, language = {ja} } @article{KamadaYokoyamaShinanoetal., author = {Kamada, Hiroki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {階層的最適化手法の援用による エネルギー供給システムのロバスト最適設計}, series = {エネルギー・資源学会第36回エネルギーシステム・経済・環境コンファレンス講演論文集}, journal = {エネルギー・資源学会第36回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {730 -- 735}, abstract = {A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. Since this problem must be solved by a special algorithm and is too difficult to solve even using a commercial solver, a hierarchical optimization approach has been applied to solve the problem but its application is limited only to small scale toy problems. In this paper, some strategies are introduced into the hierarchical optimization approach to enhance the computation efficiency for the purpose of applying the approach to large scale practical problems. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained.}, language = {ja} }