@inproceedings{ShiTheiselWeinkaufetal.2006, author = {Shi, Kuangyu and Theisel, Holger and Weinkauf, Tino and Hauser, Helwig and Hege, Hans-Christian and Seidel, Hans-Peter}, title = {Path line oriented topology for periodic 2D time-dependent vector fields}, booktitle = {Proc. Eurographics / IEEE VGTC Symposium on Visualization}, address = {Lisbon, Portugal}, pages = {139 -- 146}, year = {2006}, language = {en} } @article{WeinkaufTheiselHegeetal.2006, author = {Weinkauf, Tino and Theisel, Holger and Hege, Hans-Christian and Seidel, Hans-Peter}, title = {Topological structures in two-parameter-dependent 2D vector fields}, volume = {25 (3)}, journal = {Computer Graphics Forum}, doi = {10.1111/j.1467-8659.2006.00980.x}, pages = {607 -- 616}, year = {2006}, language = {en} } @inproceedings{CoconuDeussenHege2006, author = {Coconu, Liviu and Deussen, Oliver and Hege, Hans-Christian}, title = {Real-time pen-and-ink illustration of landscapes}, booktitle = {NPAR '06: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering}, publisher = {ACM press}, address = {New York, NY, USA}, doi = {10.1145/1124728.1124734}, pages = {27 -- 35}, year = {2006}, language = {en} } @inproceedings{SchmidtEhrenbergHege2005, author = {Schmidt-Ehrenberg, Johannes and Hege, Hans-Christian}, title = {Visual analysis of molecular conformations by means of a dynamic density mixture model}, volume = {3695}, booktitle = {Computational Life Sciences: First International Symposium, CompLife 2005}, publisher = {Springer}, address = {Konstanz, Germany}, pages = {229 -- 240}, year = {2005}, language = {en} } @inproceedings{KaehlerProhaskaHutanuetal.2005, author = {K{\"a}hler, Ralf and Prohaska, Steffen and Hutanu, Andrei and Hege, Hans-Christian}, title = {Visualization of time-dependent remote adaptive mesh refinement data}, booktitle = {Proc. IEEE Visualization 2005}, address = {Minneapolis, USA}, doi = {10.1109/VISUAL.2005.1532793}, pages = {175 -- 182}, year = {2005}, language = {en} } @inproceedings{WeinkaufTheiselShietal.2005, author = {Weinkauf, Tino and Theisel, Holger and Shi, Kuangyu and Hege, Hans-Christian and Seidel, Hans-Peter}, title = {Topological simplification of 3D vector fields and extracting higher order critical points}, booktitle = {Proc. IEEE Visualization 2005}, address = {Minneapolis, USA}, pages = {631 -- 638}, year = {2005}, language = {en} } @inproceedings{SahnerWeinkaufHege2005, author = {Sahner, Jan and Weinkauf, Tino and Hege, Hans-Christian}, title = {Galilean invariant extraction and iconic representation of vortex core lines}, booktitle = {Proc. Eurographics / IEEE VGTC Symposium on Visualization (EuroVis '05)}, editor = {Brodlie, K. and Duke, D. and Joy, K.}, address = {Leeds, UK}, doi = {10.2312/VisSym/EuroVis05/151-160}, pages = {151 -- 160}, year = {2005}, language = {en} } @inproceedings{TheiselSahnerWeinkaufetal.2005, author = {Theisel, Holger and Sahner, Jan and Weinkauf, Tino and Hege, Hans-Christian and Seidel, Hans-Peter}, title = {Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking}, booktitle = {Proc. IEEE Visualization 2005}, address = {Minneapolis, USA}, pages = {559 -- 566}, year = {2005}, language = {en} } @misc{PetzWeinkaufStreckwalletal.2006, author = {Petz, Christoph and Weinkauf, Tino and Streckwall, Heinrich and Salvatore, Franceso and Noack, Bernd R. and Hege, Hans-Christian}, title = {Vortex Structures at a Rotating Ship Propeller}, publisher = {Presented at the 24th Annual Gallery of Fluid Motion exhibit, held at the 59th Annual Meeting of the American Physical Society, Division of Fluid Dynamics, Tampa Bay}, year = {2006}, language = {en} } @article{ZieglerHegeDuda2005, author = {Ziegler, G{\"u}nter M. and Hege, Hans-Christian and Duda, Georg}, title = {Neue Bilder f{\"u}r die Medizin?}, volume = {13(3)}, journal = {DFN-Mitteilungen}, pages = {163 -- 167}, year = {2005}, language = {en} } @misc{Hege2005, author = {Hege, Hans-Christian}, title = {Hintergrundinformationen zum Artikel 'Neue Bilder f{\"u}r die Medizin?'}, publisher = {DFG-Research Center Matheon, Report, 19 pages}, year = {2005}, language = {en} } @incollection{DeussenColditzCoconuetal.2005, author = {Deussen, Oliver and Colditz, Carsten and Coconu, Liviu and Hege, Hans-Christian}, title = {Efficient modelling and rendering of landscapes}, booktitle = {Visualization in Landscape and Environmental Planning}, editor = {Bishop, Ian and Lange, Eckart}, publisher = {Spon Press}, address = {London}, pages = {56 -- 61}, year = {2005}, language = {en} } @incollection{ColditzCoconuDeussenetal.2005, author = {Colditz, Carsten and Coconu, Liviu and Deussen, Oliver and Hege, Hans-Christian}, title = {Real-time rendering of complex photorealistic landscapes using hybrid level-of-detail approaches}, booktitle = {Trends in Real-Time Landscape Visualization and Participation}, editor = {Buhmann, Erich and Paar, Philip and Bishop, Ian and Lange, Eckart}, publisher = {Wichmann Verlag}, pages = {97 -- 106}, year = {2005}, language = {en} } @incollection{CoconuColditzHegeetal.2005, author = {Coconu, Liviu and Colditz, Carsten and Hege, Hans-Christian and Deussen, Oliver}, title = {Seamless integration of stylized renditions in computer-generated landscape visualization}, booktitle = {Trends in Real-Time Landscape Visualization and Participation}, editor = {Buhmann, Erich and Paar, Philip and Bishop, Ian and Lange, Eckart}, publisher = {Wichmann Verlag}, address = {Heidelberg}, pages = {88 -- 96}, year = {2005}, language = {en} } @incollection{ClasenHege2005, author = {Clasen, Malte and Hege, Hans-Christian}, title = {Realistic illumination of vegetation in real-time environments}, booktitle = {Trends in Real-Time Landscape Visualization and Participation}, editor = {Buhmann, Erich and Paar, Philip and Bishop, Ian and Lange, Eckart}, publisher = {Wichmann Verlag}, pages = {107 -- 114}, year = {2005}, language = {en} } @article{WernerDeussenDoellneretal.2005, author = {Werner, Armin and Deussen, Oliver and D{\"o}llner, J{\"u}rgen and Hege, Hans-Christian and Paar, Philip and Rekittke, J{\"o}rg}, title = {Lenn{\´e} 3D walking through landscape plan}, journal = {Trends in Real-Time Landscape Visualization and Participation}, editor = {Buhmann, Erich and Paar, Philip and Bishop, Ian and Lange, Eckart}, publisher = {Wichmann Verlag}, pages = {48 -- 59}, year = {2005}, language = {en} } @inproceedings{KraemerHerrmannBoethetal.2015, author = {Kr{\"a}mer, Martin and Herrmann, Karl-Heinz and Boeth, Heide and Tycowicz, Christoph von and K{\"o}nig, Christian and Zachow, Stefan and Ehrig, Rainald and Hege, Hans-Christian and Duda, Georg and Reichenbach, J{\"u}rgen}, title = {Measuring 3D knee dynamics using center out radial ultra-short echo time trajectories with a low cost experimental setup}, booktitle = {ISMRM (International Society for Magnetic Resonance in Medicine), 23rd Annual Meeting 2015, Toronto, Canada}, year = {2015}, language = {en} } @article{EggerDercksenUdvaryetal.2014, author = {Egger, Robert and Dercksen, Vincent J. and Udvary, Daniel and Hege, Hans-Christian and Oberlaender, Marcel}, title = {Generation of dense statistical connectomes from sparse morphological data}, volume = {8}, journal = {Frontiers in Neuroanatomy}, number = {129}, doi = {10.3389/fnana.2014.00129}, year = {2014}, language = {en} } @incollection{PfisterKaynigBothaetal.2014, author = {Pfister, Hanspeter and Kaynig, Verena and Botha, Charl P. and Bruckner, Stefan and Dercksen, Vincent J. and Hege, Hans-Christian and Roerdink, Jos B.T.M.}, title = {Visualization in Connectomics}, booktitle = {Scientific Visualization - Uncertainty, Multifield, Biomedical, and Scalable Visualization}, editor = {Hansen, Charles D. and Chen, Min and Johnson, Christopher R. and Kaufman, Arie E. and Hagen, Hans}, publisher = {Springer}, isbn = {978-1-4471-6496-8}, arxiv = {http://arxiv.org/abs/1206.1428}, doi = {10.1007/978-1-4471-6497-5_21}, pages = {221 -- 245}, year = {2014}, abstract = {Connectomics is a branch of neuroscience that attempts to create a connectome, i.e., a complete map of the neuronal system and all connections between neuronal structures. This representation can be used to understand how functional brain states emerge from their underlying anatomical structures and how dysfunction and neuronal diseases arise. We review the current state-of-the-art of visualization and image processing techniques in the field of connectomics and describe a number of challenges. After a brief summary of the biological background and an overview of relevant imaging modalities, we review current techniques to extract connectivity information from image data at macro-, meso- and microscales. We also discuss data integration and neural network modeling, as well as the visualization, analysis and comparison of brain networks.}, language = {en} } @incollection{BonneauHegeJohnsonetal.2014, author = {Bonneau, Georges-Pierre and Hege, Hans-Christian and Johnson, Chris R. and Oliveira, Manuel M. and Potter, Kristin and Rheingans, Penny and Schultz, Thomas}, title = {Overview and State-of-the-Art of Uncertainty Visualization}, booktitle = {Scientific Visualization - Uncertainty, Multifield, Biomedical, and Scalable Visualization}, publisher = {Springer}, isbn = {978-1-4471-6496-8}, doi = {10.1007/978-1-4471-6497-5_1}, pages = {3 -- 27}, year = {2014}, abstract = {The goal of visualization is to effectively and accurately communicate data. Visualization research has often overlooked the errors and uncertainty which accompany the scientific process and describe key characteristics used to fully understand the data. The lack of these representations can be attributed, in part, to the inherent difficulty in defining, characterizing, and controlling this uncertainty, and in part, to the difficulty in including additional visual metaphors in a well designed, potent display. However, the exclusion of this information cripples the use of visualization as a decision making tool due to the fact that the display is no longer a true representation of the data. This systematic omission of uncertainty commands fundamental research within the visualization community to address, integrate, and expect uncertainty information. In this chapter, we outline sources and models of uncertainty, give an overview of the state-of-the-art, provide general guidelines, outline small exemplary applications, and finally, discuss open problems in uncertainty visualization.}, language = {en} } @article{GoubergritsSpulerSchalleretal.2014, author = {Goubergrits, Leonid and Spuler, Andreas and Schaller, Jens and Wiegmann, Nils and Berthe, Andre and Hege, Hans-Christian and Affeld, Klaus and Kertzscher, Ulrich}, title = {In vitro study of hemodynamic treatment improvement: Hunterian ligation of a fenestrated basilar artery aneurysm after coiling}, volume = {37}, journal = {The International Journal of Artificial Organs}, number = {4}, doi = {10.5301/ijao.5000314}, pages = {325 -- 335}, year = {2014}, abstract = {Hunterian ligation affecting hemodynamics in vessels was proposed to avoid rebleeding in a case of a fenestrated basilar artery aneurysm after incomplete coil occlusion. We studied the hemodynamics in vitro to predict the hemodynamic changes near the aneurysm remnant caused by Hunterian ligation. A transparent model was fabricated based on three-dimensional rotational angiography imaging. Arteries were segmented and reconstructed. Pulsatile flow in the artery segments near the partially occluded (coiled) aneurysm was investigated by means of particle image velocimetry. The hemodynamic situation was investigated before and after Hunterian ligation of either the left or the right vertebral artery (LVA/RVA). Since post-ligation flow rate in the basilar artery was unknown, reduced and retained flow rates were simulated for both ligation options. Flow in the RVA and in the corresponding fenestra vessel is characterized by a vortex at the vertebrobasilar junction, whereas the LVA exhibits undisturbed laminar flow. Both options (RVA or LVA ligation) cause a significant flow reduction near the aneurysm remnant with a retained flow rate. The impact of RVA ligation is, however, significantly higher. This in vitro case study shows that flow reduction near the aneurysm remnant can be achieved by Hunterian ligation and that this effect depends largely on the selection of the ligated vessel. Thus the ability of the proposed in vitro pipe-line to improve hemodynamic impact of the proposed therapy was successfully proved.}, language = {en} } @inproceedings{StoppelHegeWiebel2014, author = {Stoppel, Sergej and Hege, Hans-Christian and Wiebel, Alexander}, title = {Visibility-driven depth determination of surface patches in direct volume rendering}, booktitle = {EuroVis - Short Papers 2014}, doi = {10.2312/eurovisshort.20141164}, pages = {97 -- 101}, year = {2014}, abstract = {This paper presents an algorithm called surfseek for selecting surfaces on the most visible features in direct volume rendering (DVR). The algorithm is based on a previously published technique (WYSIWYP) for picking 3D locations in DVR. The new algorithm projects a surface patch on the DVR image, consisting of multiple rays. For each ray the algorithm uses WYSIWYP or a variant of it to find the candidates for the most visible locations along the ray. Using these candidates the algorithm constructs a graph and computes a minimum cut on this graph. The minimum cut represents a visible and typically rather smooth surface. In the last step the selected surface is displayed. We provide examples for results using artificially generated and real-world data sets.}, language = {en} } @article{LindowBaumHege2014, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Ligand Excluded Surface: A New Type of Molecular Surface}, volume = {20}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2014.2346404}, pages = {2486 -- 2495}, year = {2014}, abstract = {The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes - including visualization, analysis of molecular interactions and the study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare the LES for several molecules, using as ligands either water or small organic molecules.}, language = {en} } @article{GoubergritsSchallerKertzscheretal.2013, author = {Goubergrits, Leonid and Schaller, Jens and Kertzscher, Ulrich and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas}, title = {Reproducibility of Image-Based Analysis of Cerebral Aneurysm Geometry and Hemodynamics: An In-Vitro Study of Magnetic Resonance Imaging, Computed Tomography, and Three-Dimensional Rotational Angiography}, volume = {74}, journal = {Journal of Neurological Surgery, Part A: Central European Neurosurgery}, number = {5}, doi = {10.1055/s-0033-1342937}, pages = {294 -- 302}, year = {2013}, language = {en} } @article{SipsKothurUngeretal.2012, author = {Sips, Mike and Kothur, Patrick and Unger, Andrea and Hege, Hans-Christian and Dransch, Doris}, title = {A Visual Analytics Approach to Multiscale Exploration of Environmental Time Series}, volume = {18}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2012.191}, pages = {2899 -- 2907}, year = {2012}, abstract = {We present a Visual Analytics approach that addresses the detection of interesting patterns in numerical time series, specifically from environmental sciences. Crucial for the detection of interesting temporal patterns are the time scale and the starting points one is looking at. Our approach makes no assumption about time scale and starting position of temporal patterns and consists of three main steps: an algorithm to compute statistical values for all possible time scales and starting positions of intervals, visual identification of potentially interesting patterns in a matrix visualization, and interactive exploration of detected patterns. We demonstrate the utility of this approach in two scientific scenarios and explain how it allowed scientists to gain new insight into the dynamics of environmental systems.}, language = {en} } @article{WeinkaufHegeTheisel2012, author = {Weinkauf, Tino and Hege, Hans-Christian and Theisel, Holger}, title = {Advected Tangent Curves: A General Scheme for Characteristic Curves of Flow Fields}, volume = {31}, journal = {Computer Graphics Forum}, number = {2pt4}, doi = {10.1111/j.1467-8659.2012.03063.x}, pages = {825 -- 834}, year = {2012}, abstract = {We present the first general scheme to describe all four types of characteristic curves of flow fields - stream, path, streak, and time lines - as tangent curves of a derived vector field. Thus, all these lines can be obtained by a simple integration of an autonomous ODE system. Our approach draws on the principal ideas of the recently introduced tangent curve description of streak lines. We provide the first description of time lines as tangent curves of a derived vector field, which could previously only be constructed in a geometric manner. Furthermore, our scheme gives rise to new types of curves. In particular, we introduce advected stream lines as a parameter-free variant of the time line metaphor. With our novel mathematical description of characteristic curves, a large number of feature extraction and analysis tools becomes available for all types of characteristic curves, which were previously only available for stream and path lines. We will highlight some of these possible applications including the computation of time line curvature fields and the extraction of cores of swirling advected stream lines.}, language = {en} } @inproceedings{HellerWurlPerkaetal.2012, author = {Heller, Markus O. and Wurl, Alexander and Perka, Carsten and Hege, Hans-Christian}, title = {In vivo gluteus medius volume and shape variations across gender and disease status}, volume = {45, Suppl. 1}, booktitle = {Journal of Biomechanics}, doi = {10.1016/S0021-9290(12)70359-7}, pages = {S358}, year = {2012}, language = {en} } @article{HoerthBaumKnoeteletal.2015, author = {Hoerth, Rebecca M. and Baum, Daniel and Kn{\"o}tel, David and Prohaska, Steffen and Willie, Bettina M. and Duda, Georg and Hege, Hans-Christian and Fratzl, Peter and Wagermaier, Wolfgang}, title = {Registering 2D and 3D Imaging Data of Bone during Healing}, volume = {56}, journal = {Connective Tissue Research}, number = {2}, publisher = {Taylor \& Francis}, doi = {10.3109/03008207.2015.1005210}, pages = {133 -- 143}, year = {2015}, language = {en} } @article{CourniaAllenAndricioaeietal.2015, author = {Cournia, Zoe and Allen, Toby W. and Andricioaei, Ioan and Antonny, Bruno and Baum, Daniel and Brannigan, Grace and Buchete, Nicolae-Viorel and Deckman, Jason T. and Delemotte, Lucie and del Val, Coral and Friedman, Ran and Gkeka, Paraskevi and Hege, Hans-Christian and H{\´e}nin, J{\´e}r{\^o}me and Kasimova, Marina A. and Kolocouris, Antonios and Klein, Michael L. and Khalid, Syma and Lemieux, Joanne and Lindow, Norbert and Roy, Mahua and Selent, Jana and Tarek, Mounir and Tofoleanu, Florentina and Vanni, Stefano and Urban, Sinisa and Wales, David J. and Smith, Jeremy C. and Bondar, Ana-Nicoleta}, title = {Membrane Protein Structure, Function and Dynamics: A Perspective from Experiments and Theory}, volume = {248}, journal = {Journal of Membrane Biology}, number = {4}, doi = {10.1007/s00232-015-9802-0}, pages = {611 -- 640}, year = {2015}, language = {en} } @article{MuecklichWebelAboulfadletal.2014, author = {M{\"u}cklich, Frank and Webel, Johannes and Aboulfadl, Hisham and Lindow, Norbert and Hege, Hans-Christian}, title = {Correlative Tomography - Extraction of Reliable Information with Adequate Resolution from mm Scale Down to Sub-nm Scale}, volume = {20}, journal = {Microsc. Microanal.}, number = {Suppl 3}, doi = {10.1017/S1431927614005911}, pages = {838 -- 839}, year = {2014}, language = {en} } @inproceedings{Hege2014, author = {Hege, Hans-Christian}, title = {Visual analysis of molecular dynamics data using geometric and topological methods}, volume = {57}, booktitle = {Forum "Math for Industry" 2014}, publisher = {Institute of Mathematics for Industry, Kyushu University}, address = {Fukuoka, Japan}, pages = {45 -- 46}, year = {2014}, language = {en} } @article{GuentherKuhnHegeetal.2016, author = {G{\"u}nther, Tobias and Kuhn, Alexander and Hege, Hans-Christian and Theisel, Holger}, title = {MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields}, volume = {35}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/cgf.12914}, pages = {381 -- 390}, year = {2016}, language = {en} } @inproceedings{SagnolHegeWeiser2016, author = {Sagnol, Guillaume and Hege, Hans-Christian and Weiser, Martin}, title = {Using sparse kernels to design computer experiments with tunable precision}, booktitle = {22nd Intern. Conf. on Computational Statistics - COMPSTAT 2016, Oviedo, Spain, 23-26 August 2016, Proceedings ISBN 978-90-73592-36-0}, pages = {397 -- 408}, year = {2016}, language = {en} } @inproceedings{CoconuHege2017, author = {Coconu, Liviu and Hege, Hans-Christian}, title = {devEyes: Tangible Devices on Augmented Passive Surfaces}, booktitle = {TEI '17 Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, Yokohama, Japan, March 20 - 23, 2017}, doi = {10.1145/3024969.3025065}, pages = {409 -- 411}, year = {2017}, abstract = {We present a novel approach to turn smartphones/ tablets into tangible near-surface devices with augmented reality (AR) capability on virtually any passive surface, like desks, tables and wallboards. A low-cost optoelectronic add-on for the device back camera enables position tracking on an almost invisible printable fiducial marker grid. This approach is promising in terms of adoption potential because it can be used anywhere with existing devices, requires no dedicated hardware installations and is applicable to a broad range of real-world applications.}, language = {en} } @article{HeinzeDipankarHenkenetal.2017, author = {Heinze, Rieke and Dipankar, Anurag and Henken, Cintia Carbajal and Moseley, Christopher and Sourdeval, Odran and Tr{\"o}mel, Silke and Xie, Xinxin and Adamidis, Panos and Ament, Felix and Baars, Holger and Barthlott, Christian and Behrendt, Andreas and Blahak, Ulrich and Bley, Sebastian and Brdar, Slavko and Brueck, Matthias and Crewell, Susanne and Deneke, Hartwig and Di Girolamo, Paolo and Evaristo, Raquel and Fischer, J{\"u}rgen and Frank, Christopher and Friederichs, Petra and G{\"o}cke, Tobias and Gorges, Ksenia and Hande, Luke and Hanke, Moritz and Hansen, Akio and Hege, Hans-Christian and Hose, Corinna and Jahns, Thomas and Kalthoff, Norbert and Klocke, Daniel and Kneifel, Stefan and Knippertz, Peter and Kuhn, Alexander and van Laar, Thriza and Macke, Andreas and Maurer, Vera and Mayer, Bernhard and Meyer, Catrin I. and Muppa, Shravan K. and Neggers, Roeland A. J. and Orlandi, Emiliano and Pantillon, Florian and Pospichal, Bernhard and R{\"o}ber, Niklas and Scheck, Leonhard and Seifert, Axel and Seifert, Patric and Senf, Fabian and Siligam, Pavan and Simmer, Clemens and Steinke, Sandra and Stevens, Bjorn and Wapler, Kathrin and Weniger, Michael and Wulfmeyer, Volker and Z{\"a}ngl, G{\"u}nther and Zhang, Dan and Quaas, Johannes}, title = {Large-eddy simulations over Germany using ICON: a comprehensive evaluation}, volume = {143}, journal = {Quarterly Journal of the Royal Meteorological Society}, number = {702}, doi = {10.1002/qj.2947}, pages = {69 -- 100}, year = {2017}, abstract = {Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model.}, language = {en} } @article{KozlikovaKroneFalketal.2016, author = {Kozl{\´i}kov{\´a}, Barbora and Krone, Michael and Falk, Martin and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art Revisited}, volume = {36}, journal = {Computer Graphics Forum}, number = {8}, doi = {10.1111/cgf.13072}, pages = {178 -- 204}, year = {2016}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets.}, language = {en} } @misc{GuentherKuhnHegeetal.2016, author = {G{\"u}nther, Tobias and Kuhn, Alexander and Hege, Hans-Christian and Gross, Markus and Theisel, Holger}, title = {Progressive Monte-Carlo Rendering of Atmospheric Flow Features Across Scales}, journal = {69th Annual Meeting of the APS Division of Fluid Dynamics, Gallery of Fluid Motion, Nov 20-22, 2016, Portland, OR, USA.}, doi = {10.1103/APS.DFD.2016.GFM.P0030}, year = {2016}, abstract = {To improve existing weather prediction and reanalysis capabilities, high-resolution and multi-modal climate data becomes an increasingly important topic. The advent of increasingly dense numerical simulation of atmospheric phenomena, provides new means to better understand dynamic processes and to visualize structural flow patterns that remain hidden otherwise. In the presented illustrations we demonstrate an advanced technique to visualize multiple scales of dense flow fields and Lagrangian patterns therein, simulated by state-of-the-art simulation models for each scale. They provide a deeper insight into the structural differences and patterns that occur on each scale and highlight the complexity of flow phenomena in our atmosphere.}, language = {en} } @inproceedings{ArltLindowBaumetal.2016, author = {Arlt, Tobias and Lindow, Norbert and Baum, Daniel and Hilger, Andre and Mahnke, Ingo and Hege, Hans-Christian and Lepper, Verena and Siopi, Tzulia and Mahnke, Heinz.Eberhard}, title = {Virtual Access to Hidden Texts - Study of Ancient Papyri}, booktitle = {Eighth Joint BER II and BESSY II User Meeting, Dec 7-9, 2016, Berlin, Germany}, year = {2016}, abstract = {When physical unfolding/unrolling of papyri is not possible or too dangerous for preserving the precious object, tomographic approaches may be the ap- propriate alternative. Requirements are the resolution and the contrast to distinguish writing and substrate. The steps to be performed are the following: (1) Select the object of interest (archaeological arguments, cultural back- ground of the object, etc.). (2) Find the proper physical procedure, especially with respect to contrast, take the tomographic data, e.g. by absorption x-ray tomography. (3) Apply mathematical unfolding transformations to the tomographic data, in order to obtain a 2d-planar reconstruction of text.}, language = {en} } @inproceedings{KuhnHege2017, author = {Kuhn, Alexander and Hege, Hans-Christian}, title = {Object-based visualization and evaluation of cloud-resolving simulations}, booktitle = {Book of Abstracts, SCCS 2017 - Scaling Cascades in Complex Systems, Mar 27-29, 2017, Berlin, Germany}, year = {2017}, abstract = {Recent advances in high-resolution, cloud resolving simulation models pose several challenges towards respective analysis methodologies. To enable efficient comparison and validation of such models efficient, scalable, and informative diagnostic procedures are mandatory. In this talk, an object-based evaluation scheme based on the notion of scalar field topology will be presented. The presentation will cover the application of topological clustering procedures for object identification, tracking, and the retrieval of object-based statistics. The pro-posed methodology is shown to enable an advanced in-depth evaluation and visualization of high cloud-resolving models. Using a newly developed large-scale high-resolution model (i.e., HD(CP)2 ICON), it will be demonstrated that the presented procedures are applicable to assess the model performance compared to measurements (e.g., radar, satellite) and standard operational models (COSMO) at different domains and spatial scales.}, language = {en} } @inproceedings{KuhnEngelkeFlatkenetal.2017, author = {Kuhn, Alexander and Engelke, Wito and Flatken, Markus and Hege, Hans-Christian and Hotz, Ingrid}, title = {Topology-based Analysis for Multimodal Atmospheric Data of Volcano Eruptions}, booktitle = {Topological Methods in Data Analysis and Visualization IV}, publisher = {Springer}, address = {Cham, Schweiz}, doi = {10.1007/978-3-319-44684-4_2}, pages = {35 -- 50}, year = {2017}, language = {en} } @inproceedings{BaumMahlowLameckeretal.2014, author = {Baum, Daniel and Mahlow, Kristin and Lamecker, Hans and Zachow, Stefan and M{\"u}ller, Johannes and Hege, Hans-Christian}, title = {The Potential of Surface-based Geometric Morphometrics for Evolutionary Studies: An Example using Dwarf Snakes (Eirenis)}, booktitle = {Abstract in DigitalSpecimen 2014}, year = {2014}, abstract = {Geometric morphometrics plays an important role in evolutionary studies. The state-of-the-art in this field are landmark-based methods. Since the landmarks usually need to be placed manually, only a limited number of landmarks are generally used to represent the shape of an anatomical structure. As a result, shape characteristics that cannot be properly represented by small sets of landmarks are disregarded. In this study, we present a method that is free of this limitation. The method takes into account the whole shape of an anatomical structure, which is represented as a surface, hence the term 'surface-based morphometrics'. Correspondence between two surfaces is established by defining a partitioning of the surfaces into homologous surface patches. The first step for the generation of a surface partitioning is to place landmarks on the surface. Subsequently, the landmarks are connected by curves lying on the surface. The curves, called 'surface paths', might either follow specific anatomical features or they can be geodesics, that is, shortest paths on the surface. One important requirement, however, is that the resulting surface path networks are topologically equivalent across all surfaces. Once the surface path networks have been defined, the surfaces are decomposed into patches according to the path networks. This approach has several advantages. One of them is that we can discretize the surface by as many points as desired. Thus, even fine shape details can be resolved if this is of interest for the study. Since a point discretization is used, another advantage is that well-established analysis methods for landmark-based morphometrics can be utilized. Finally, the shapes can be easily morphed into one another, thereby greatly supporting the understanding of shape changes across all considered specimens. To show the potential of the described method for evolutionary studies of biological specimens, we applied the method to the para-basisphenoid complex of the snake genus Eirenis. By using this anatomical structure as example, we present all the steps that are necessary for surface-based morphometrics, including the segmentation of the para-basisphenoid complex from micro-CT data sets. We also show some first results using statistical analysis as well as classification methods based on the presented technique.}, language = {en} } @misc{PolthierSullivanZiegleretal.2014, author = {Polthier, Konrad and Sullivan, John and Ziegler, G{\"u}nter M. and Hege, Hans-Christian}, title = {Visualization}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and et al.,}, publisher = {European Mathematical Society}, isbn = {978-3-03719-137-8}, doi = {10.4171/137}, pages = {335 -- 339}, year = {2014}, language = {en} } @misc{LameckerHegeTabelowetal.2014, author = {Lamecker, Hans and Hege, Hans-Christian and Tabelow, Karsten and Polzehl, J{\"o}rg}, title = {Image Processing}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and et al.,}, publisher = {European Mathematical Society}, doi = {10.4171/137}, pages = {359 -- 376}, year = {2014}, language = {en} } @inproceedings{EngelkeKuhnFlatkenetal.2014, author = {Engelke, Wito and Kuhn, Alexander and Flatken, Markus and Chen, Fang and Hege, Hans-Christian and Gerndt, Andreas and Hotz, Ingrid}, title = {Atmospheric Impact of Volcano Eruptions}, booktitle = {Proceedings IEEE SciVis 2014}, year = {2014}, abstract = {The analysis of data that captures volcanic eruptions and their atmospheric aftermath plays an important role for domain experts to gain a deeper understanding of the volcanic eruption and their consequences for atmosphere, climate and air traffic. Thereby, one major challenge is to extract and combine the essential information, which is spread over various, mostly sparse data sources. This requires a careful integration of each data set with its strength and limitations. The sparse, but more reliable measurement data is mainly used to calibrate the more dense simulation data. This work combines a collection of visualization approaches into an exploitative framework. The goal is to support the domain experts to build a complete picture of the situation. But it is also important to understand the individual data sources, the wealth of their information and the quality of the simulation results. All presented methods are designed for direct interaction with the data from different perspectives rather than the sole generation of some final images.}, language = {en} } @inproceedings{KozlikovaKroneLindowetal.2015, author = {Kozlikova, Barbora and Krone, Michael and Lindow, Norbert and Falk, Martin and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art}, booktitle = {EuroVis 2015 STARS Proceedings}, doi = {10.2312/eurovisstar.20151112}, pages = {61 -- 81}, year = {2015}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The report concludes with an outlook on promising and important research topics to enable further success in advancing the knowledge about interaction of molecular structures.}, language = {en} } @misc{DeuflhardHege2015, author = {Deuflhard, Peter and Hege, Hans-Christian}, title = {Raumtiefe in Malerei und Computergrafik}, journal = {R{\"a}ume - Bilder - Kulturen}, editor = {Lepper, Verena and Deuflhard, Peter and Markschies, Christoph}, publisher = {Walter De Gruyter}, isbn = {978-3-11-035993-0}, pages = {33 -- 46}, year = {2015}, abstract = {Einf{\"u}hrung: Die Tiefenwirkung dreidimensionaler R{\"a}ume in einem zweidimensionalen Bild einzufangen, ist ein Faszinosum nahezu aller Kulturen der Menschheitsgeschichte. Der vorliegende Aufsatz folgt den Spuren dieses Faszinosums, vergleichend in der Malerei und der mathematisierten Computergrafik. Die Entdeckung der Zentralperspektive in der italienischen Renaissance zeigt bereits den engen Zusammenhang von Malerei und Mathematik. Auf der Suche nach Maltechniken, mit denen Raumtiefe bildnerisch dargestellt werden kann, beginnen wir in Kap. 2 mit einem chronologischen Gang durch verschiedene Epochen der europ{\"a}ischen Malerei. Hieraus abgeleitete Prinzipien, soweit sie im Rechner realisierbar scheinen, stellen wir in Kap. 3 am Beispiel moderner Methoden der mathematischen Visualisierung vor.}, language = {de} } @article{KastenReininghausHotzetal.2016, author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans-Christian and Noack, Bernd and Daviller, Guillaume and Morzyński, Marek}, title = {Acceleration feature points of unsteady shear flows}, volume = {68}, journal = {Archives of Mechanics}, number = {1}, pages = {55 -- 80}, year = {2016}, abstract = {A framework is proposed for extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance. The minima of the acceleration magnitude, i.e. a superset of the acceleration zeros, are extracted and discriminated into vortices and saddle points --- based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These features are tracked in time with a robust algorithm for tracking features. Thus a space-time hierarchy of the minima is built and vortex merging events are detected. The acceleration feature extraction strategy is applied to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of pressure field and minima of λ2.}, language = {en} } @inproceedings{JacomeEggelerPoethkowetal.2015, author = {J{\´a}come, Leonardo Agudo and Eggeler, Gunter and P{\"o}thkow, Kai and Paetsch, Olaf and Hege, Hans-Christian}, title = {Three-Dimensional Characterization of Superdislocation Interactions in the High Temperature and Low Stress Creep Regime of Ni-Base Superalloy Single Crystals}, booktitle = {Proceedings of CREEP 2015 - 13th International Conference on Creep and Fracture of Engineering Materials and Structures, May 31 - June 4, 2015, Toulouse, France}, pages = {16 -- 17}, year = {2015}, abstract = {Monocrystaline Ni-base superalloys are the material of choice for first row blades in jet engine gas turbines. Using a novel visualization tool for 3D reconstruction and visualization of dislocation line segments from stereo-pairs of scanning transmission electron microscopies, the superdislocation substructures in Ni-base superalloy LEK 94 (crept to ε = 26\%) are characterized. Probable scenarios are discussed, how these dislocation substructures form.}, language = {en} } @misc{BojarovskiHegeLieetal.2015, author = {Bojarovski, Stefan and Hege, Hans-Christian and Lie, Han Cheng and Weber, Marcus}, title = {Topological analysis and visualization of scalar functions characterizing conformational transitions of molecules on multiple time-scales}, journal = {Shape Up 2015 - Exercises in Materials Geometry and Topology, 14-18 Sept. 2015, Berlin, Germany}, year = {2015}, abstract = {Molecular processes such as protein folding or ligand-receptor-binding can be understood by analyzing the free energy landscape. Those processes are often metastable, i.e. the molecular systems remain in basins around local minima of the free energy landscape, and in rare cases undergo gauche transitions between metastable states by passing saddle-points of this landscape. By discretizing the configuration space, this can be modeled as a discrete Markov process. One way to compute the transition rates between conformations of a molecular system is by utilizing Transition Path Theory and the concept of committor functions. A fundamental problem from the computational point of view is that many time-scales are involved, ranging from 10^(-14) sec for the fastest motion to 10^(-6) sec or more for conformation changes that cause biological effects. The goal of our work is to provide a better understanding of such transitions in configuration space on various time-scales by analyzing characteristic scalar functions topologically and geometrically. We are developing suitable visualization and interaction techniques to support our analysis. For example, we are analyzing a transition rate indicator function by computing and visualizing its Reeb graph together with the sets of molecular states corresponding to maxima of the transition rate indicator function. A particular challenge is the high dimensionality of the domain which does not allow for a straightforward visualization of the function. The computational topology approach to the analysis of the transition rate indicator functions for a molecular system allows to explore different time scales of the system by utilizing coarser or finer topological partitioning of the function. A specific goal is the development of tools for analyzing the hierarchy of these partitionings. This approach tackles the analysis of a complex and sparse dataset from a different angle than the well-known spectral analysis of Markov State Models.}, language = {en} } @article{HermannPohlTremblayetal.2016, author = {Hermann, Gunter and Pohl, Vincent and Tremblay, Jean Christophe and Paulus, Beate and Hege, Hans-Christian and Schild, Axel}, title = {ORBKIT - A modular Python toolbox for cross-platform post-processing of quantum chemical wavefunction data}, volume = {37}, journal = {Journal of Computational Chemistry}, number = {16}, doi = {10.1002/jcc.24358}, pages = {1511 -- 1520}, year = {2016}, abstract = {ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wave function, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs. ORBKIT can be used as a standalone program to determine standard quantities, for example, the electron density, molecular orbitals, and derivatives thereof. The cornerstone of ORBKIT is its modular structure. The existing basic functions can be arranged in an individual way and can be easily extended by user-written modules to determine any other derived quantity. ORBKIT offers multiple output formats that can be processed by common visualization tools (VMD, Molden, etc.). Additionally, ORBKIT offers routines to order molecular orbitals computed at different nuclear configurations according to their electronic character and to interpolate the wavefunction between these configurations. The program is open-source under GNU-LGPLv3 license and freely available at https://github.com/orbkit/orbkit/. This article provides an overview of ORBKIT with particular focus on its capabilities and applicability, and includes several example calculations.}, language = {en} }