@article{HegeBengerMerzkyetal.2000, author = {Hege, Hans-Christian and Benger, Werner and Merzky, Andr{\´e} and Kasper, Friedbert and Radke, Thomas and Seidel, Edward}, title = {Schwarze L{\"o}cher in Sicht - Immersive {\"U}berwachung und Steuerung von Remote-Simulationen}, series = {DFN-Mitteilungen}, volume = {52}, journal = {DFN-Mitteilungen}, number = {2}, pages = {4 -- 6}, year = {2000}, language = {en} } @article{Hege1994, author = {Hege, Hans-Christian}, title = {Scaling study of pure SU(3) theory - the QCD-TARO collaboration}, series = {Nucl. Phys. B Proc. Suppl.}, volume = {34}, journal = {Nucl. Phys. B Proc. Suppl.}, doi = {10.1016/0920-5632(94)90358-1}, pages = {246 -- 252}, year = {1994}, language = {en} } @inproceedings{TheiselWeinkaufHegeetal.2003, author = {Theisel, Holger and Weinkauf, Tino and Hege, Hans-Christian and Seidel, Hans-Peter}, title = {Saddle Connectors - An Approach to Visualizing the Topological Skeleton of Complex 3D Vector Fields}, series = {Proc. IEEE Visualization 2003}, booktitle = {Proc. IEEE Visualization 2003}, address = {Seattle}, doi = {10.1109/VISUAL.2003.1250376}, pages = {225 -- 232}, year = {2003}, language = {en} } @article{BaumLindowHegeetal.2017, author = {Baum, Daniel and Lindow, Norbert and Hege, Hans-Christian and Lepper, Verena and Siopi, Tzulia and Kutz, Frank and Mahlow, Kristin and Mahnke, Heinz-Eberhard}, title = {Revealing hidden text in rolled and folded papyri}, series = {Applied Physics A}, volume = {123}, journal = {Applied Physics A}, number = {3}, doi = {10.1007/s00339-017-0808-6}, pages = {171}, year = {2017}, abstract = {Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds.}, language = {en} } @misc{BaumLindowHegeetal., author = {Baum, Daniel and Lindow, Norbert and Hege, Hans-Christian and Lepper, Verena and Siopi, Tzulia and Kutz, Frank and Mahlow, Kristin and Mahnke, Heinz-Eberhard}, title = {Revealing hidden text in rolled and folded papyri}, issn = {1438-0064}, doi = {10.1007/s00339-017-0808-6}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61826}, abstract = {Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds.}, language = {en} } @article{GoubergritsSchallerKertzscheretal., author = {Goubergrits, Leonid and Schaller, Jens and Kertzscher, Ulrich and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas}, title = {Reproducibility of Image-Based Analysis of Cerebral Aneurysm Geometry and Hemodynamics: An In-Vitro Study of Magnetic Resonance Imaging, Computed Tomography, and Three-Dimensional Rotational Angiography}, series = {Journal of Neurological Surgery, Part A: Central European Neurosurgery}, volume = {74}, journal = {Journal of Neurological Surgery, Part A: Central European Neurosurgery}, number = {5}, doi = {10.1055/s-0033-1342937}, pages = {294 -- 302}, language = {en} } @inproceedings{KaehlerCoxPattersonetal.2002, author = {K{\"a}hler, Ralf and Cox, Donna and Patterson, Robert and Levy, Stuart and Hege, Hans-Christian and Abel, Tom}, title = {Rendering The First Star in The Universe - A Case Study}, series = {Proceedings of IEEE Visualization 2002}, booktitle = {Proceedings of IEEE Visualization 2002}, editor = {J. Moorhead, Robert and Gross, Markus and I. Joy, Kenneth}, publisher = {IEEE Computer Society Press}, address = {Boston MA, USA}, doi = {10.1109/VISUAL.2002.1183824}, pages = {537 -- 540}, year = {2002}, language = {en} } @misc{HoerthBaumKnoeteletal., author = {Hoerth, Rebecca M. and Baum, Daniel and Kn{\"o}tel, David and Prohaska, Steffen and Willie, Bettina M. and Duda, Georg and Hege, Hans-Christian and Fratzl, Peter and Wagermaier, Wolfgang}, title = {Registering 2D and 3D Imaging Data of Bone during Healing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53426}, abstract = {Purpose/Aims of the Study: Bone's hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro computed tomography (μCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds. The overall aim of the present study is to answer bone research questions by linking information of different 2D and 3D imaging techniques. A great challenge in combining different methods arises from the fact that they usually reflect different characteristics of the real structure. Materials and Methods: We investigated bone during healing by means of μCT and a couple of 2D methods. Backscattered electron images were used to qualitatively evaluate the tissue's calcium content and served as a position map for other experimental data. Nanoindentation and X-ray scattering experiments were performed to visualize mechanical and structural properties. Results: We present an approach for the registration of 2D data in a 3D μCT reference frame, where scanning electron microscopies serve as a methodic link. Backscattered electron images are perfectly suited for registration into μCT reference frames, since both show structures based on the same physical principles. We introduce specific registration tools that have been developed to perform the registration process in a semi-automatic way. Conclusions: By applying this routine, we were able to exactly locate structural information (e.g. mineral particle properties) in the 3D bone volume. In bone healing studies this will help to better understand basic formation, remodeling and mineralization processes.}, language = {en} } @article{HoerthBaumKnoeteletal., author = {Hoerth, Rebecca M. and Baum, Daniel and Kn{\"o}tel, David and Prohaska, Steffen and Willie, Bettina M. and Duda, Georg and Hege, Hans-Christian and Fratzl, Peter and Wagermaier, Wolfgang}, title = {Registering 2D and 3D Imaging Data of Bone during Healing}, series = {Connective Tissue Research}, volume = {56}, journal = {Connective Tissue Research}, number = {2}, publisher = {Taylor \& Francis}, doi = {10.3109/03008207.2015.1005210}, pages = {133 -- 143}, language = {en} } @misc{GowinSaparinFelsenbergetal.2002, author = {Gowin, Wolfgang and Saparin, Peter and Felsenberg, Dieter and Kurths, J{\"u}rgen and Zaikin, Alexei and Prohaska, Steffen and Hege, Hans-Christian}, title = {Regional Structural Skeletal Discordance Assessed by Measures of Complexity}, year = {2002}, language = {en} } @inproceedings{GladilinZachowDeuflhardetal.2003, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {Realistic prediction of individual facial emotion expressions for craniofacial surgery simulations}, series = {Proc. SPIE medical Imaging 2003}, volume = {5029}, booktitle = {Proc. SPIE medical Imaging 2003}, editor = {Galloway, Robert}, address = {San Diego, CA, USA}, doi = {10.1117/12.479584}, pages = {520 -- 527}, year = {2003}, language = {en} } @incollection{ClasenHege2005, author = {Clasen, Malte and Hege, Hans-Christian}, title = {Realistic illumination of vegetation in real-time environments}, series = {Trends in Real-Time Landscape Visualization and Participation}, booktitle = {Trends in Real-Time Landscape Visualization and Participation}, editor = {Buhmann, Erich and Paar, Philip and Bishop, Ian and Lange, Eckart}, publisher = {Wichmann Verlag}, pages = {107 -- 114}, year = {2005}, language = {en} } @incollection{ColditzCoconuDeussenetal.2005, author = {Colditz, Carsten and Coconu, Liviu and Deussen, Oliver and Hege, Hans-Christian}, title = {Real-time rendering of complex photorealistic landscapes using hybrid level-of-detail approaches}, series = {Trends in Real-Time Landscape Visualization and Participation}, booktitle = {Trends in Real-Time Landscape Visualization and Participation}, editor = {Buhmann, Erich and Paar, Philip and Bishop, Ian and Lange, Eckart}, publisher = {Wichmann Verlag}, pages = {97 -- 106}, year = {2005}, language = {en} } @inproceedings{CoconuDeussenHege2006, author = {Coconu, Liviu and Deussen, Oliver and Hege, Hans-Christian}, title = {Real-time pen-and-ink illustration of landscapes}, series = {NPAR '06: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering}, booktitle = {NPAR '06: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering}, publisher = {ACM press}, address = {New York, NY, USA}, doi = {10.1145/1124728.1124734}, pages = {27 -- 35}, year = {2006}, language = {en} } @misc{DeuflhardHege, author = {Deuflhard, Peter and Hege, Hans-Christian}, title = {Raumtiefe in Malerei und Computergrafik}, series = {R{\"a}ume - Bilder - Kulturen}, journal = {R{\"a}ume - Bilder - Kulturen}, editor = {Lepper, Verena and Deuflhard, Peter and Markschies, Christoph}, publisher = {Walter De Gruyter}, isbn = {978-3-11-035993-0}, pages = {33 -- 46}, abstract = {Einf{\"u}hrung: Die Tiefenwirkung dreidimensionaler R{\"a}ume in einem zweidimensionalen Bild einzufangen, ist ein Faszinosum nahezu aller Kulturen der Menschheitsgeschichte. Der vorliegende Aufsatz folgt den Spuren dieses Faszinosums, vergleichend in der Malerei und der mathematisierten Computergrafik. Die Entdeckung der Zentralperspektive in der italienischen Renaissance zeigt bereits den engen Zusammenhang von Malerei und Mathematik. Auf der Suche nach Maltechniken, mit denen Raumtiefe bildnerisch dargestellt werden kann, beginnen wir in Kap. 2 mit einem chronologischen Gang durch verschiedene Epochen der europ{\"a}ischen Malerei. Hieraus abgeleitete Prinzipien, soweit sie im Rechner realisierbar scheinen, stellen wir in Kap. 3 am Beispiel moderner Methoden der mathematischen Visualisierung vor.}, language = {de} } @inproceedings{HarthBastTroidletal., author = {Harth, Philipp and Bast, Arco and Troidl, Jakob and Meulemeester, Bjorge and Pfister, Hanspeter and Beyer, Johanna and Oberlaender, Marcel and Hege, Hans-Christian and Baum, Daniel}, title = {Rapid Prototyping for Coordinated Views of Multi-scale Spatial and Abstract Data: A Grammar-based Approach}, series = {Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM)}, booktitle = {Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM)}, doi = {10.2312/vcbm.20231218}, abstract = {Visualization grammars are gaining popularity as they allow visualization specialists and experienced users to quickly create static and interactive views. Existing grammars, however, mostly focus on abstract views, ignoring three-dimensional (3D) views, which are very important in fields such as natural sciences. We propose a generalized interaction grammar for the problem of coordinating heterogeneous view types, such as standard charts (e.g., based on Vega-Lite) and 3D anatomical views. An important aspect of our web-based framework is that user interactions with data items at various levels of detail can be systematically integrated and used to control the overall layout of the application workspace. With the help of a concise JSON-based specification of the intended workflow, we can handle complex interactive visual analysis scenarios. This enables rapid prototyping and iterative refinement of the visual analysis tool in collaboration with domain experts. We illustrate the usefulness of our framework in two real-world case studies from the field of neuroscience. Since the logic of the presented grammar-based approach for handling interactions between heterogeneous web-based views is free of any application specifics, it can also serve as a template for applications beyond biological research.}, language = {en} } @article{AkemideForcrandFujisakietal.1995, author = {Akemi, K. and deForcrand, Ph. and Fujisaki, M. and Hashimoto, T. and Hege, Hans-Christian and Hioki, S. and Miyamura, O. and Nakamura, A. and Okuda, M. and Stamatescu, I. O. and Tago, Yoshio and Takaishi, T.}, title = {Quantum Chromodynamics Simulations on a Non-Dedicated Highly Parallel Computer}, series = {Comp. Phys. Comm}, volume = {90}, journal = {Comp. Phys. Comm}, doi = {10.1016/0010-4655(95)00082-Q}, pages = {201 -- 214}, year = {1995}, language = {en} } @article{SaparinThomsenProhaskaetal.2005, author = {Saparin, Peter and Thomsen, Jesper and Prohaska, Steffen and Zaikin, Alexei and Kurths, J{\"u}rgen and Hege, Hans-Christian and Gowin, Wolfgang}, title = {Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity}, series = {Acta Astronautica}, volume = {56}, journal = {Acta Astronautica}, number = {9-12}, doi = {10.1016/j.actaastro.2005.01.007}, pages = {820 -- 830}, year = {2005}, language = {en} } @inproceedings{SaparinGowinZaikinetal.2003, author = {Saparin, Peter and Gowin, Wolfgang and Zaikin, Alexei and Thomsen, Jesper and Prohaska, Steffen and Hege, Hans-Christian and Kurths, J{\"u}rgen}, title = {Quantification of Changes in Spatial Structure of Human Bone Biopsies Using 3D Measures of Complexity}, series = {14th IAA Humans in Space Symposium}, booktitle = {14th IAA Humans in Space Symposium}, address = {Banff, Alberta, Canada}, year = {2003}, language = {en} } @article{HashimotoHege1993, author = {Hashimoto, T. and Hege, Hans-Christian}, title = {QCD on the Massively Parallel Computer AP 1000}, series = {Int. J. Mod. Phys.}, volume = {4}, journal = {Int. J. Mod. Phys.}, number = {6}, doi = {10.1142/S0129183193000975}, pages = {1233 -- 1253}, year = {1993}, language = {en} } @article{AkemiForcrandFujisakietal.1992, author = {Akemi, K. and Forcrand, Ph. de and Fujisaki, M. and Hashimoto, T. and Hege, Hans-Christian and Hioki, S. and Makino, J. and Miyamura, O. and Nakamura, A. and Okuda, M. and Stamatescu, I. O. and Tago, Yoshio and Takaishi, T.}, title = {QCD on the Highly Parallel Computer AP 1000}, series = {Nucl. Phys. B Proc. Suppl. 26}, journal = {Nucl. Phys. B Proc. Suppl. 26}, doi = {10.1016/0920-5632(92)90358-Y}, pages = {644 -- 646}, year = {1992}, language = {en} } @inproceedings{HegeHutanuKaehleretal.2003, author = {Hege, Hans-Christian and Hutanu, Andrei and K{\"a}hler, Ralf and Merzky, Andr{\´e} and Radke, Thomas and Seidel, Edward and Ullmer, Brygg}, title = {Progressive Retrieval and Hierarchical Visualization of Large Remote Data}, series = {Proceedings of the 2003 Workshop on Adaptive Grid Middleware}, booktitle = {Proceedings of the 2003 Workshop on Adaptive Grid Middleware}, pages = {60 -- 72}, year = {2003}, language = {en} } @misc{GuentherKuhnHegeetal., author = {G{\"u}nther, Tobias and Kuhn, Alexander and Hege, Hans-Christian and Gross, Markus and Theisel, Holger}, title = {Progressive Monte-Carlo Rendering of Atmospheric Flow Features Across Scales}, series = {69th Annual Meeting of the APS Division of Fluid Dynamics, Gallery of Fluid Motion, Nov 20-22, 2016, Portland, OR, USA.}, journal = {69th Annual Meeting of the APS Division of Fluid Dynamics, Gallery of Fluid Motion, Nov 20-22, 2016, Portland, OR, USA.}, doi = {10.1103/APS.DFD.2016.GFM.P0030}, abstract = {To improve existing weather prediction and reanalysis capabilities, high-resolution and multi-modal climate data becomes an increasingly important topic. The advent of increasingly dense numerical simulation of atmospheric phenomena, provides new means to better understand dynamic processes and to visualize structural flow patterns that remain hidden otherwise. In the presented illustrations we demonstrate an advanced technique to visualize multiple scales of dense flow fields and Lagrangian patterns therein, simulated by state-of-the-art simulation models for each scale. They provide a deeper insight into the structural differences and patterns that occur on each scale and highlight the complexity of flow phenomena in our atmosphere.}, language = {en} } @article{GuentherKuhnHegeetal., author = {G{\"u}nther, Tobias and Kuhn, Alexander and Hege, Hans-Christian and Gross, Markus and Theisel, Holger}, title = {Progressive Monte Carlo rendering of atmospheric flow features across scales}, series = {Physical Review Fluids}, volume = {2}, journal = {Physical Review Fluids}, doi = {10.1103/PhysRevFluids.2.090502}, pages = {09050-1 -- 09050-3}, abstract = {To improve existing weather prediction and reanalysis capabilities, high-resolution and multi-modal climate data becomes an increasingly important topic. The advent of increasingly dense numerical simulation of atmospheric phenomena, provides new means to better understand dynamic processes and to visualize structural flow patterns that remain hidden otherwise. In the presented illustrations we demonstrate an advanced technique to visualize multiple scales of dense flow fields and Lagrangian patterns therein, simulated by state-of-the-art simulation models for each scale. They provide a deeper insight into the structural differences and patterns that occur on each scale and highlight the complexity of flow phenomena in our atmosphere. This paper is associated with a poster winner of a 2016 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2016.GFM.P0030}, language = {en} } @inproceedings{DeuflhardHegeSeebass2000, author = {Deuflhard, Peter and Hege, Hans-Christian and Seebaß, Martin}, title = {Progress Towards a Combined MRI/Hyperthermia System}, series = {Proceedings Second International Congress HIGH CARE 2000}, booktitle = {Proceedings Second International Congress HIGH CARE 2000}, address = {Bochum}, year = {2000}, language = {en} } @article{Hege1996, author = {Hege, Hans-Christian}, title = {Problems and Solutions: Product of Chebyshev Polynomials}, series = {Orthogonal Polynomials and Special Functions}, volume = {6 (2)}, journal = {Orthogonal Polynomials and Special Functions}, pages = {12}, year = {1996}, language = {en} } @article{PoethkowWeberHege2011, author = {P{\"o}thkow, Kai and Weber, Britta and Hege, Hans-Christian}, title = {Probabilistic Marching Cubes}, series = {Computer Graphics Forum}, volume = {30}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/j.1467-8659.2011.01942.x}, pages = {931 -- 940}, year = {2011}, language = {en} } @article{PetzPoethkowHege2012, author = {Petz, Christoph and P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Probabilistic Local Features in Uncertain Vector Fields with Spatial Correlation}, series = {Computer Graphics Forum}, volume = {31}, journal = {Computer Graphics Forum}, number = {3}, pages = {1045 -- 1054}, year = {2012}, language = {en} } @article{PoethkowHege2011, author = {P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {10}, doi = {10.1109/TVCG.2010.247}, pages = {1393 -- 1406}, year = {2011}, language = {en} } @inproceedings{KussHegeKrofcziketal.2007, author = {Kuß, Anja and Hege, Hans-Christian and Krofczik, Sabine and B{\"o}rner, Jana}, title = {Pipeline for the creation of surface-based averaged brain atlases}, series = {Proceedings of WSCG 2007 - the 15-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision}, volume = {15}, booktitle = {Proceedings of WSCG 2007 - the 15-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision}, address = {Plzen, Czech Republic}, pages = {17 -- 24}, year = {2007}, language = {en} } @article{LindowBaumHege2012, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Perceptually Linear Parameter Variations}, series = {Computer Graphics Forum}, volume = {31}, journal = {Computer Graphics Forum}, number = {2}, doi = {10.1111/j.1467-8659.2012.03054.x target}, pages = {535 -- 544}, year = {2012}, language = {en} } @misc{WiebelVosHege, author = {Wiebel, Alexander and Vos, Frans M. and Hege, Hans-Christian}, title = {Perception-Oriented Picking of Structures in Direct Volumetric Renderings}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14343}, number = {11-45}, abstract = {Radiologists from all application areas are trained to read slice-based visualizations of 3D medical image data. Despite the numerous examples of sophisticated three-dimensional renderings, especially all variants of direct volume rendering, such methods are often considered not very useful by radiologists who prefer slice-based visualization. Just recently there have been attempts to bridge this gap between 2D and 3D renderings. These attempts include specialized techniques for volume picking that result in repositioning slices. In this paper, we present a new volume picking technique that, in contrast to previous work, does not require pre-segmented data or metadata. The positions picked by our method are solely based on the data itself, the transfer function and, most importantly, on the way the volumetric rendering is perceived by viewers. To demonstrate the usefulness of the proposed method we apply it for automatically repositioning slices in an abdominal MRI scan, a data set from a flow simulation and a number of other volumetric scalar fields. Furthermore we discuss how the method can be implemented in combination with various different volumetric rendering techniques.}, language = {en} } @inproceedings{WustNadobnyGellermannetal.1997, author = {Wust, Peter and Nadobny, Jacek and Gellermann, Johanna and Seebaß, Martin and Stalling, Detlev and Hege, Hans-Christian and Deuflhard, Peter and Felix, Roland}, title = {Patient Models and Algorithms for Hyperthermia Planning}, series = {Proceedings of the 16th Annual Meeting of the European Society for Hyperthermic Oncology ESHO-97}, booktitle = {Proceedings of the 16th Annual Meeting of the European Society for Hyperthermic Oncology ESHO-97}, year = {1997}, language = {en} } @inproceedings{ShiTheiselWeinkaufetal.2006, author = {Shi, Kuangyu and Theisel, Holger and Weinkauf, Tino and Hauser, Helwig and Hege, Hans-Christian and Seidel, Hans-Peter}, title = {Path line oriented topology for periodic 2D time-dependent vector fields}, series = {Proc. Eurographics / IEEE VGTC Symposium on Visualization}, booktitle = {Proc. Eurographics / IEEE VGTC Symposium on Visualization}, address = {Lisbon, Portugal}, pages = {139 -- 146}, year = {2006}, language = {en} } @inproceedings{ShiTheiselHauseretal.2009, author = {Shi, Kuangyu and Theisel, Holger and Hauser, Helwig and Weinkauf, Tino and Hege, Hans-Christian and Seidel, Hans-Peter}, title = {Path Line Attributes - an Information Visualization Approach to Analyzing the Dynamic Behavior of 3D Time-Dependent Flow Fields}, series = {Topology-Based Methods in Visualization II}, booktitle = {Topology-Based Methods in Visualization II}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-540-88606-8_6}, pages = {75 -- 88}, year = {2009}, language = {en} } @inproceedings{WunderlingGrammelHege1994, author = {Wunderling, Roland and Grammel, Martin and Hege, Hans-Christian}, title = {Parallele LU-Zerlegung großer, unsymmetrischer, d{\"u}nn besetzter Matrizen bei hohen Kommunikationslatenzen}, series = {GI/ITG-Workshop, Sept.1994, Mitteilungen der Fachgruppe PARS der Gesellschaft f{\"u}r Informatik (GI)}, volume = {13}, booktitle = {GI/ITG-Workshop, Sept.1994, Mitteilungen der Fachgruppe PARS der Gesellschaft f{\"u}r Informatik (GI)}, address = {Potsdam}, pages = {191 -- 200}, year = {1994}, language = {en} } @inproceedings{ZoecklerStallingHege1996, author = {Z{\"o}ckler, Malte and Stalling, Detlev and Hege, Hans-Christian}, title = {Parallel Line Integral Convolution}, series = {Proc. First Eurographics Workshop on Parallel Graphics and Visualization}, booktitle = {Proc. First Eurographics Workshop on Parallel Graphics and Visualization}, address = {Bristol, U.K.}, doi = {10.1016/S0167-8191(97)00039-2}, pages = {111 -- 128}, year = {1996}, language = {en} } @incollection{BonneauHegeJohnsonetal.2014, author = {Bonneau, Georges-Pierre and Hege, Hans-Christian and Johnson, Chris R. and Oliveira, Manuel M. and Potter, Kristin and Rheingans, Penny and Schultz, Thomas}, title = {Overview and State-of-the-Art of Uncertainty Visualization}, series = {Scientific Visualization - Uncertainty, Multifield, Biomedical, and Scalable Visualization}, booktitle = {Scientific Visualization - Uncertainty, Multifield, Biomedical, and Scalable Visualization}, publisher = {Springer}, isbn = {978-1-4471-6496-8}, doi = {10.1007/978-1-4471-6497-5_1}, pages = {3 -- 27}, year = {2014}, abstract = {The goal of visualization is to effectively and accurately communicate data. Visualization research has often overlooked the errors and uncertainty which accompany the scientific process and describe key characteristics used to fully understand the data. The lack of these representations can be attributed, in part, to the inherent difficulty in defining, characterizing, and controlling this uncertainty, and in part, to the difficulty in including additional visual metaphors in a well designed, potent display. However, the exclusion of this information cripples the use of visualization as a decision making tool due to the fact that the display is no longer a true representation of the data. This systematic omission of uncertainty commands fundamental research within the visualization community to address, integrate, and expect uncertainty information. In this chapter, we outline sources and models of uncertainty, give an overview of the state-of-the-art, provide general guidelines, outline small exemplary applications, and finally, discuss open problems in uncertainty visualization.}, language = {en} } @article{WilliePapPerkaetal., author = {Willie, Bettina M. and Pap, Thomas and Perka, Carsten and Schmidt, Carsten Oliver and Eckstein, Felix and Arampatzis, Adamantios and Hege, Hans-Christian and Madry, Henning and Vortkamp, Andrea and Duda, Georg}, title = {OVERLOAD - Rolle der Gelenk{\"u}berlastung in der prim{\"a}ren Arthrose - Die Krankheitsprogression verstehen und vermeiden}, series = {Zeitschrift f{\"u}r Rheumatologie}, volume = {74}, journal = {Zeitschrift f{\"u}r Rheumatologie}, doi = {10.1007/s00393-014-1561-2}, pages = {618 -- 621}, abstract = {Intakte Gelenke sind eine Voraussetzung f{\"u}r das Funktionieren des Skeletts und die Mobilit{\"a}t im Lebensalltag. Ein gesunder Bewegungsapparat ist die Grundlage f{\"u}r die Funktionsf{\"a}higkeit des Herz-Kreislauf-Systems wie auch der Immunabwehr. Bewegungs- und Physiotherapie sowie verschiedene Formen der Patientenaktivit{\"a}t stellen essenzielle klinische Ans{\"a}tze in der Behandlung von neurodegenerativen Erkrankungen, Schlaganfall, Diabetes und Krebs dar. Kommt es zu degenerativen Ver{\"a}nderungen von Gelenken, bedeutet dies eine wesentliche Beeintr{\"a}chtigung der Mobilit{\"a}t. N{\"a}chtliche Schmerzen und Schlafst{\"o}rungen treten in fortgeschrittenen Stadien auf und sind besonders belastend. Arthrose wird auch als degenerative Gelenkerkrankung bezeichnet. Sie geht mit Ver{\"a}nderungen in der Struktur und Zusammensetzung des Gelenkknorpels wie auch des verkalkten Knorpels, der subchondralen Kortikalis, der subchondralen Spongiosa, des Meniskus, der Gelenkkapsel und der Synovialis einher, was schließlich zur Degeneration dieser Gewebe f{\"u}hrt, aus denen sich die Synovialgelenke zusammensetzen.}, language = {de} } @article{WilliePapPerkaetal., author = {Willie, Bettina M. and Pap, Thomas and Perka, Carsten and Schmidt, Carsten Oliver and Eckstein, Felix and Arampatzis, Adamantios and Hege, Hans-Christian and Madry, Henning and Vortkamp, Andrea and Duda, Georg}, title = {OVERLOAD of joints and its role in osteoarthritis - Towards understanding and preventing progression of primary osteoarthritis}, series = {Zeitschrift f{\"u}r Rheumatologie}, volume = {76}, journal = {Zeitschrift f{\"u}r Rheumatologie}, number = {Suppl. 1}, doi = {10.1007/s00393-014-1561-2}, pages = {1 -- 4}, abstract = {Intact joints are necessary for skeletal function and mobility in daily life. A healthy musculoskeletal system is the basis for a functional cardiovascular system as well as an intact immune system. Locomotion, physiotherapy, and various forms of patient activity are essential clinical therapies used in the treatment of neurodegeneration, stroke, diabetes, and cancer. Mobility is substantially impaired with degeneration of joints and, in advanced stages, nighttime pain and sleep disturbance are particularly cumbersome. Osteoarthritis (OA) is also known as degenerative joint disease. OA involves structural and compositional changes in the articular cartilage, as well as in the calcified cartilage, subchondral cortical bone, subchondral cancellous bone, meniscus, joint capsular tissue, and synovium; which eventually lead to degeneration of these tissues comprising synovial joints.}, language = {en} } @inproceedings{RitterProhaskaBrandetal., author = {Ritter, Zully and Prohaska, Steffen and Brand, R. and Friedmann, A. and Hege, Hans-Christian and Goebbels, J{\"u}rgen and Felsenberg, Dieter}, title = {Osteocytes number and volume in osteoporotic and in healthy bone biopsies analysed using Synchrotron CT: a pilot study}, series = {Proc. ISB 2011}, booktitle = {Proc. ISB 2011}, language = {en} } @article{HermannPohlTremblayetal., author = {Hermann, Gunter and Pohl, Vincent and Tremblay, Jean Christophe and Paulus, Beate and Hege, Hans-Christian and Schild, Axel}, title = {ORBKIT - A modular Python toolbox for cross-platform post-processing of quantum chemical wavefunction data}, series = {Journal of Computational Chemistry}, volume = {37}, journal = {Journal of Computational Chemistry}, number = {16}, doi = {10.1002/jcc.24358}, pages = {1511 -- 1520}, abstract = {ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wave function, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs. ORBKIT can be used as a standalone program to determine standard quantities, for example, the electron density, molecular orbitals, and derivatives thereof. The cornerstone of ORBKIT is its modular structure. The existing basic functions can be arranged in an individual way and can be easily extended by user-written modules to determine any other derived quantity. ORBKIT offers multiple output formats that can be processed by common visualization tools (VMD, Molden, etc.). Additionally, ORBKIT offers routines to order molecular orbitals computed at different nuclear configurations according to their electronic character and to interpolate the wavefunction between these configurations. The program is open-source under GNU-LGPLv3 license and freely available at https://github.com/orbkit/orbkit/. This article provides an overview of ORBKIT with particular focus on its capabilities and applicability, and includes several example calculations.}, language = {en} } @article{ZeilhoferHege2002, author = {Zeilhofer, Hans-Florian and Hege, Hans-Christian}, title = {Operieren im Medizin-Grid}, series = {DFN-Mitteilungen, Heft 60}, journal = {DFN-Mitteilungen, Heft 60}, pages = {19 -- 20}, year = {2002}, language = {en} } @inproceedings{KussProhaskaMeyeretal.2008, author = {Kuß, Anja and Prohaska, Steffen and Meyer, Bj{\"o}rn and Rybak, J{\"u}rgen and Hege, Hans-Christian}, title = {Ontology-Based Visualization of Hierarchical Neuroanatomical Structures}, series = {Proceedings of the Eurographics Workshop on Visual Computing for Biomedicine VCBM 2008}, booktitle = {Proceedings of the Eurographics Workshop on Visual Computing for Biomedicine VCBM 2008}, pages = {177 -- 184}, year = {2008}, language = {en} } @misc{GrammelHegeWunderling, author = {Grammel, Martin and Hege, Hans-Christian and Wunderling, Roland}, title = {On the Impact of Communication Latencies on Distributed Sparse LU Factorization.}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-1245}, number = {SC-93-28}, abstract = {Sparse LU factorization offers some potential for parallelism, but at a level of very fine granularity. However, most current distributed memory MIMD architectures have too high communication latencies for exploiting all parallelism available. To cope with this, latencies must be avoided by coarsening the granularity and by message fusion. However, both techniques limit the concurrency, thereby reducing the scalability. In this paper, an implementation of a parallel LU decomposition algorithm for linear programming bases is presented for distributed memory parallel computers with noticable communication latencies. Several design decisions due to latencies, including data distribution and load balancing techniques, are discussed. An approximate performance model is set up for the algorithm, which allows to quantify the impact of latencies on its performance. Finally, experimental results for an Intel iPSC/860 parallel computer are reported and discussed.}, language = {en} } @misc{KastenHotzNoacketal.2011, author = {Kasten, Jens and Hotz, Ingrid and Noack, Bernd and Hege, Hans-Christian}, title = {On the Extraction of Long-living Features in Unsteady Fluid Flows}, series = {Topological Methods in Data Analysis and Visualization}, journal = {Topological Methods in Data Analysis and Visualization}, editor = {Pascucci, Valerio and Tricoche, Xavier and Hagen, Hans and Tierny, Julien}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-15013-5}, doi = {10.1007/978-3-642-15014-2_10}, pages = {115 -- 126}, year = {2011}, language = {en} } @misc{KastenHotzHege, author = {Kasten, Jens and Hotz, Ingrid and Hege, Hans-Christian}, title = {On the Elusive Concept of Lagrangian Coherent Structures}, series = {Topological Methods in Data Analysis and Visualization II}, journal = {Topological Methods in Data Analysis and Visualization II}, editor = {Peikert, Ronald and Hauser, Helwig and Carr, Hamish and Fuchs, Raphael}, publisher = {Springer}, doi = {10.1007/978-3-642-23175-9_14}, pages = {207 -- 220}, language = {en} } @inproceedings{GladilinZachowDeuflhardetal.2003, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {On constitutive modeling of soft tissue for the long-term prediction of cranio-maxillofacial surgery outcome}, series = {International Congress Series, CARS2003, Computer Assisted Radiology and Surgery, Proceedings of the 17th International Congress and Exhibition}, volume = {1256}, booktitle = {International Congress Series, CARS2003, Computer Assisted Radiology and Surgery, Proceedings of the 17th International Congress and Exhibition}, doi = {10.1016/S0531-5131(03)00500-4}, pages = {343 -- 348}, year = {2003}, language = {en} } @article{KainmuellerLameckerHelleretal.2013, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Heller, Markus O. and Weber, Britta and Hege, Hans-Christian and Zachow, Stefan}, title = {Omnidirectional Displacements for Deformable Surfaces}, series = {Medical Image Analysis}, volume = {17}, journal = {Medical Image Analysis}, number = {4}, publisher = {Elsevier}, doi = {10.1016/j.media.2012.11.006}, pages = {429 -- 441}, year = {2013}, language = {en} } @inproceedings{KuhnHege, author = {Kuhn, Alexander and Hege, Hans-Christian}, title = {Object-based visualization and evaluation of cloud-resolving simulations}, series = {Book of Abstracts, SCCS 2017 - Scaling Cascades in Complex Systems, Mar 27-29, 2017, Berlin, Germany}, booktitle = {Book of Abstracts, SCCS 2017 - Scaling Cascades in Complex Systems, Mar 27-29, 2017, Berlin, Germany}, abstract = {Recent advances in high-resolution, cloud resolving simulation models pose several challenges towards respective analysis methodologies. To enable efficient comparison and validation of such models efficient, scalable, and informative diagnostic procedures are mandatory. In this talk, an object-based evaluation scheme based on the notion of scalar field topology will be presented. The presentation will cover the application of topological clustering procedures for object identification, tracking, and the retrieval of object-based statistics. The pro-posed methodology is shown to enable an advanced in-depth evaluation and visualization of high cloud-resolving models. Using a newly developed large-scale high-resolution model (i.e., HD(CP)2 ICON), it will be demonstrated that the presented procedures are applicable to assess the model performance compared to measurements (e.g., radar, satellite) and standard operational models (COSMO) at different domains and spatial scales.}, language = {en} }