@article{OttoGermerHegeetal.2010, author = {Otto, Mathias and Germer, Tobias and Hege, Hans-Christian and Theisel, Holger}, title = {Uncertain 2D Vector Field Topology}, series = {Comput. Graph. Forum}, volume = {29}, journal = {Comput. Graph. Forum}, doi = {10.1111/j.1467-8659.2009.01604.x}, pages = {347 -- 356}, year = {2010}, language = {en} } @article{GoubergritsThamsenBertheetal.2010, author = {Goubergrits, Leonid and Thamsen, Bente and Berthe, Andr{\´e} and Poethke, Jens and Kertzscher, Ulrich and Affeld, Klaus and Petz, Christoph and Hege, Hans-Christian and Hoch, Heinrich and Spuler, Andreas}, title = {In Vitro Study of Near-Wall Flow in a Cerebral Aneurysm Model with and without Coils}, series = {American Journal of Neuroradiology}, volume = {31:8}, journal = {American Journal of Neuroradiology}, doi = {10.3174/ajnr.A2121}, pages = {1521 -- 1528}, year = {2010}, language = {en} } @article{HegeLaidlawMachiraju2010, author = {Hege, Hans-Christian and Laidlaw, David and Machiraju, Raghu}, title = {Guest Editor's Introduction: Special Section on Volume Graphics and Point-Based Graphics}, series = {IEEE Trans. Vis. Comput. Graph.}, volume = {16}, journal = {IEEE Trans. Vis. Comput. Graph.}, number = {4}, doi = {10.1109/TVCG.2010.72}, pages = {531 -- 532}, year = {2010}, language = {en} } @article{LindowBaumBondaretal.2013, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Exploring cavity dynamics in biomolecular systems}, series = {BMC Bioinformatics}, volume = {14}, journal = {BMC Bioinformatics}, edition = {(Suppl 19):S5}, doi = {10.1186/1471-2105-14-S19-S5}, year = {2013}, language = {en} } @article{PoethkowPetzHege2013, author = {P{\"o}thkow, Kai and Petz, Christoph and Hege, Hans-Christian}, title = {Approximate Level-Crossing Probabilities for Interactive Visualization of Uncertain Isocontours}, series = {International Journal for Uncertainty Quantification}, volume = {3}, journal = {International Journal for Uncertainty Quantification}, number = {2}, doi = {10.1615/Int.J.UncertaintyQuantification.2012003958}, pages = {101 -- 117}, year = {2013}, language = {en} } @misc{HombergBaumWiebeletal.2014, author = {Homberg, Ulrike and Baum, Daniel and Wiebel, Alexander and Prohaska, Steffen and Hege, Hans-Christian}, title = {Definition, Extraction, and Validation of Pore Structures in Porous Materials}, series = {Topological Methods in Data Analysis and Visualization III}, journal = {Topological Methods in Data Analysis and Visualization III}, editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald}, publisher = {Springer}, doi = {10.1007/978-3-319-04099-8_15}, pages = {235 -- 248}, year = {2014}, language = {en} } @inproceedings{RosanwoPetzProhaskaetal.2009, author = {Rosanwo, Olufemi and Petz, Christoph and Prohaska, Steffen and Hotz, Ingrid and Hege, Hans-Christian}, title = {Dual Streamline Seeding}, series = {Proceedings of the IEEE Pacific Visualization Symposium}, booktitle = {Proceedings of the IEEE Pacific Visualization Symposium}, editor = {Eades, Peter and Ertl, Thomas and Shen, Han-Wei}, address = {Beijing, China}, pages = {9 -- 16}, year = {2009}, language = {en} } @inproceedings{RybakKussHolleretal.2009, author = {Rybak, J{\"u}rgen and Kuß, Anja and Holler, Wolfgang and Brandt, Robert and Hege, Hans-Christian and Menzel, Randolf}, title = {The HoneyBee Standard Brain (HSB) - a versatile atlas tool for integrating data and data exchange in the neuroscience community}, series = {BMC Neuroscience}, volume = {10 (Suppl 1):P1}, booktitle = {BMC Neuroscience}, doi = {10.1186/1471-2202-10-S1-P1}, year = {2009}, language = {en} } @article{OberlaenderDercksenEggeretal.2009, author = {Oberlaender, Marcel and Dercksen, Vincent J. and Egger, Robert and Gensel, Maria and Sakmann, Bert and Hege, Hans-Christian}, title = {Automated three-dimensional detection and counting of neuron somata}, series = {Journal of Neuroscience Methods}, volume = {180}, journal = {Journal of Neuroscience Methods}, number = {1}, doi = {10.1016/j.jneumeth.2009.03.008}, pages = {147 -- 160}, year = {2009}, language = {en} } @article{GoubergritsWeberPetzetal.2009, author = {Goubergrits, Leonid and Weber, Sarah and Petz, Christoph and Spuler, Andreas and P{\"o}thke, Jens and Berthe, Andr{\´e} and Hege, Hans-Christian}, title = {Wall-PIV as a Near Wall Flow Validation Tool for CFD}, series = {Journal of Visualization}, volume = {12}, journal = {Journal of Visualization}, number = {3}, pages = {241 -- 250}, year = {2009}, language = {en} } @article{GoubergritsWellnhoferKertzscheretal.2009, author = {Goubergrits, Leonid and Wellnhofer, Ernst and Kertzscher, Ulrich and Affeld, Klaus and Petz, Christoph and Hege, Hans-Christian}, title = {Coronary Artery WSS Profiling Using a Geometry Reconstruction Based on Biplane Angiography}, series = {Annals of Biomedical Engineering}, volume = {37}, journal = {Annals of Biomedical Engineering}, number = {4}, publisher = {Springer}, doi = {s10439-009-9656-7}, pages = {682 -- 691}, year = {2009}, language = {en} } @book{HegeEds1998, author = {Hege, Hans-Christian and (Eds.), Konrad}, title = {Mathematical Visualization - Algorithms, Applications, and Numerics}, publisher = {Springer}, address = {Heidelberg}, isbn = {ISBN 3-540-63991-8}, year = {1998}, language = {en} } @book{HegePolthier1998, author = {Hege, Hans-Christian and Polthier, Konrad}, title = {VideoMath - Festival at ICM 98}, series = {Springer VideoMath}, journal = {Springer VideoMath}, isbn = {978-3-540-21385-7}, year = {1998}, language = {en} } @article{CourniaAllenAndricioaeietal.2015, author = {Cournia, Zoe and Allen, Toby W. and Andricioaei, Ioan and Antonny, Bruno and Baum, Daniel and Brannigan, Grace and Buchete, Nicolae-Viorel and Deckman, Jason T. and Delemotte, Lucie and del Val, Coral and Friedman, Ran and Gkeka, Paraskevi and Hege, Hans-Christian and H{\´e}nin, J{\´e}r{\^o}me and Kasimova, Marina A. and Kolocouris, Antonios and Klein, Michael L. and Khalid, Syma and Lemieux, Joanne and Lindow, Norbert and Roy, Mahua and Selent, Jana and Tarek, Mounir and Tofoleanu, Florentina and Vanni, Stefano and Urban, Sinisa and Wales, David J. and Smith, Jeremy C. and Bondar, Ana-Nicoleta}, title = {Membrane Protein Structure, Function and Dynamics: A Perspective from Experiments and Theory}, series = {Journal of Membrane Biology}, volume = {248}, journal = {Journal of Membrane Biology}, number = {4}, doi = {10.1007/s00232-015-9802-0}, pages = {611 -- 640}, year = {2015}, language = {en} } @article{MuecklichWebelAboulfadletal., author = {M{\"u}cklich, Frank and Webel, Johannes and Aboulfadl, Hisham and Lindow, Norbert and Hege, Hans-Christian}, title = {Correlative Tomography - Extraction of Reliable Information with Adequate Resolution from mm Scale Down to Sub-nm Scale}, series = {Microsc. Microanal.}, volume = {20}, journal = {Microsc. Microanal.}, number = {Suppl 3}, doi = {10.1017/S1431927614005911}, pages = {838 -- 839}, language = {en} } @inproceedings{EngelkeKuhnFlatkenetal.2015, author = {Engelke, Wito and Kuhn, Alexander and Flatken, Markus and Chen, Fang and Hege, Hans-Christian and Gerndt, Andreas and Hotz, Ingrid}, title = {Atmospheric Impact of Volcano Eruptions}, series = {Proceedings IEEE SciVis 2014}, booktitle = {Proceedings IEEE SciVis 2014}, year = {2015}, abstract = {The analysis of data that captures volcanic eruptions and their atmospheric aftermath plays an important role for domain experts to gain a deeper understanding of the volcanic eruption and their consequences for atmosphere, climate and air traffic. Thereby, one major challenge is to extract and combine the essential information, which is spread over various, mostly sparse data sources. This requires a careful integration of each data set with its strength and limitations. The sparse, but more reliable measurement data is mainly used to calibrate the more dense simulation data. This work combines a collection of visualization approaches into an exploitative framework. The goal is to support the domain experts to build a complete picture of the situation. But it is also important to understand the individual data sources, the wealth of their information and the quality of the simulation results. All presented methods are designed for direct interaction with the data from different perspectives rather than the sole generation of some final images.}, language = {en} } @misc{DeuflhardHege, author = {Deuflhard, Peter and Hege, Hans-Christian}, title = {Raumtiefe in Malerei und Computergrafik}, series = {R{\"a}ume - Bilder - Kulturen}, journal = {R{\"a}ume - Bilder - Kulturen}, editor = {Lepper, Verena and Deuflhard, Peter and Markschies, Christoph}, publisher = {Walter De Gruyter}, isbn = {978-3-11-035993-0}, pages = {33 -- 46}, abstract = {Einf{\"u}hrung: Die Tiefenwirkung dreidimensionaler R{\"a}ume in einem zweidimensionalen Bild einzufangen, ist ein Faszinosum nahezu aller Kulturen der Menschheitsgeschichte. Der vorliegende Aufsatz folgt den Spuren dieses Faszinosums, vergleichend in der Malerei und der mathematisierten Computergrafik. Die Entdeckung der Zentralperspektive in der italienischen Renaissance zeigt bereits den engen Zusammenhang von Malerei und Mathematik. Auf der Suche nach Maltechniken, mit denen Raumtiefe bildnerisch dargestellt werden kann, beginnen wir in Kap. 2 mit einem chronologischen Gang durch verschiedene Epochen der europ{\"a}ischen Malerei. Hieraus abgeleitete Prinzipien, soweit sie im Rechner realisierbar scheinen, stellen wir in Kap. 3 am Beispiel moderner Methoden der mathematischen Visualisierung vor.}, language = {de} } @article{KastenReininghausHotzetal.2016, author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans-Christian and Noack, Bernd and Daviller, Guillaume and Morzyński, Marek}, title = {Acceleration feature points of unsteady shear flows}, series = {Archives of Mechanics}, volume = {68}, journal = {Archives of Mechanics}, number = {1}, pages = {55 -- 80}, year = {2016}, abstract = {A framework is proposed for extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance. The minima of the acceleration magnitude, i.e. a superset of the acceleration zeros, are extracted and discriminated into vortices and saddle points --- based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These features are tracked in time with a robust algorithm for tracking features. Thus a space-time hierarchy of the minima is built and vortex merging events are detected. The acceleration feature extraction strategy is applied to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of pressure field and minima of λ2.}, language = {en} } @inproceedings{AgudoJacomeHegePaetschetal., author = {Agudo J{\´a}come, Leonardo and Hege, Hans-Christian and Paetsch, Olaf and P{\"o}thkow, Kai}, title = {3D Reconstruction, Visualization and Quantification of Dislocations from Transmission Electron Microscopy Stereo-Pairs}, series = {Microscopy and Microanalysis 2016, July 24-28 Columbus, Ohio}, booktitle = {Microscopy and Microanalysis 2016, July 24-28 Columbus, Ohio}, language = {en} } @inproceedings{KuhnEngelkeFlatkenetal., author = {Kuhn, Alexander and Engelke, Wito and Flatken, Markus and Hege, Hans-Christian and Hotz, Ingrid}, title = {Topology-based Analysis for Multimodal Atmospheric Data of Volcano Eruptions}, series = {Topological Methods in Data Analysis and Visualization IV}, booktitle = {Topological Methods in Data Analysis and Visualization IV}, publisher = {Springer}, address = {Cham, Schweiz}, doi = {10.1007/978-3-319-44684-4_2}, pages = {35 -- 50}, language = {en} }