@article{BengerBartschHegeetal.2006, author = {Benger, Werner and Bartsch, Hauke and Hege, Hans-Christian and Kitzler, Hagen and Shumilina, Anna and Werner, Annett}, title = {Visualizing neuronal structures in the human brain via Diffusion Tensor MRI}, series = {Int. Journal of Neuroscience}, volume = {116(4)}, journal = {Int. Journal of Neuroscience}, pages = {461 -- 514}, year = {2006}, language = {en} } @inproceedings{PapazovDercksenLameckeretal.2008, author = {Papazov, Chavdar and Dercksen, Vincent J. and Lamecker, Hans and Hege, Hans-Christian}, title = {Visualizing morphogenesis and growth by temporal interpolation of surface-based 3D atlases}, series = {Proceedings of the 2008 IEEE International Symposium on Biomedical Imaging}, booktitle = {Proceedings of the 2008 IEEE International Symposium on Biomedical Imaging}, doi = {10.1109/ISBI.2008.4541123}, pages = {824 -- 827}, year = {2008}, language = {en} } @inproceedings{SchmidtEhrenbergBaumHege2002, author = {Schmidt-Ehrenberg, Johannes and Baum, Daniel and Hege, Hans-Christian}, title = {Visualizing Dynamic Molecular Conformations}, series = {Proceedings of IEEE Visualization 2002}, booktitle = {Proceedings of IEEE Visualization 2002}, editor = {J. Moorhead, Robert and Gross, Markus and I. Joy, Kenneth}, publisher = {IEEE Computer Society Press}, address = {Boston MA, USA}, doi = {10.1109/VISUAL.2002.1183780}, pages = {235 -- 242}, year = {2002}, language = {en} } @article{BestHege2002, author = {Best, Christoph and Hege, Hans-Christian}, title = {Visualizing and Identifying Conformational Ensembles in Molecular Dynamics Trajectories}, series = {IEEE Computing in Science \& Engineering}, volume = {4(3)}, journal = {IEEE Computing in Science \& Engineering}, doi = {10.1109/5992.998642}, pages = {68 -- 75}, year = {2002}, language = {en} } @article{MayeWenckebachHege2006, author = {Maye, Alexander and Wenckebach, Thomas and Hege, Hans-Christian}, title = {Visualization, reconstruction, and integration of neuronal structures in digital brain atlases}, series = {Int. Journal of Neuroscience}, volume = {116(4)}, journal = {Int. Journal of Neuroscience}, pages = {431 -- 459}, year = {2006}, language = {en} } @inproceedings{KaehlerProhaskaHutanuetal.2005, author = {K{\"a}hler, Ralf and Prohaska, Steffen and Hutanu, Andrei and Hege, Hans-Christian}, title = {Visualization of time-dependent remote adaptive mesh refinement data}, series = {Proc. IEEE Visualization 2005}, booktitle = {Proc. IEEE Visualization 2005}, address = {Minneapolis, USA}, doi = {10.1109/VISUAL.2005.1532793}, pages = {175 -- 182}, year = {2005}, language = {en} } @article{KozlikovaKroneFalketal., author = {Kozl{\´i}kov{\´a}, Barbora and Krone, Michael and Falk, Martin and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art Revisited}, series = {Computer Graphics Forum}, volume = {36}, journal = {Computer Graphics Forum}, number = {8}, doi = {10.1111/cgf.13072}, pages = {178 -- 204}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets.}, language = {en} } @misc{KozlikovaKroneFalketal., author = {Kozlikova, Barbora and Krone, Michael and Falk, Martin and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art}, issn = {1438-0064}, doi = {10.2312/eurovisstar.20151112}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57217}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets.}, language = {en} } @inproceedings{KozlikovaKroneLindowetal.2015, author = {Kozlikova, Barbora and Krone, Michael and Lindow, Norbert and Falk, Martin and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art}, series = {EuroVis 2015 STARS Proceedings}, booktitle = {EuroVis 2015 STARS Proceedings}, doi = {10.2312/eurovisstar.20151112}, pages = {61 -- 81}, year = {2015}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The report concludes with an outlook on promising and important research topics to enable further success in advancing the knowledge about interaction of molecular structures.}, language = {en} } @misc{PfisterKaynigBothaetal.2012, author = {Pfister, Hanspeter and Kaynig, Verena and Botha, Charl and Bruckner, Stefan and Dercksen, Vincent J. and Hege, Hans-Christian and Roerdink, Jos}, title = {Visualization in Connectomics}, doi = {10.1007/978-1-4471-6497-5_21}, year = {2012}, language = {en} } @incollection{PfisterKaynigBothaetal.2014, author = {Pfister, Hanspeter and Kaynig, Verena and Botha, Charl P. and Bruckner, Stefan and Dercksen, Vincent J. and Hege, Hans-Christian and Roerdink, Jos B.T.M.}, title = {Visualization in Connectomics}, series = {Scientific Visualization - Uncertainty, Multifield, Biomedical, and Scalable Visualization}, booktitle = {Scientific Visualization - Uncertainty, Multifield, Biomedical, and Scalable Visualization}, editor = {Hansen, Charles D. and Chen, Min and Johnson, Christopher R. and Kaufman, Arie E. and Hagen, Hans}, publisher = {Springer}, isbn = {978-1-4471-6496-8}, doi = {10.1007/978-1-4471-6497-5_21}, pages = {221 -- 245}, year = {2014}, abstract = {Connectomics is a branch of neuroscience that attempts to create a connectome, i.e., a complete map of the neuronal system and all connections between neuronal structures. This representation can be used to understand how functional brain states emerge from their underlying anatomical structures and how dysfunction and neuronal diseases arise. We review the current state-of-the-art of visualization and image processing techniques in the field of connectomics and describe a number of challenges. After a brief summary of the biological background and an overview of relevant imaging modalities, we review current techniques to extract connectivity information from image data at macro-, meso- and microscales. We also discuss data integration and neural network modeling, as well as the visualization, analysis and comparison of brain networks.}, language = {en} } @book{HegeEds1997, author = {Hege, Hans-Christian and (Eds.), Konrad}, title = {Visualization and Mathematics - Experiments, Simulations and Environments}, publisher = {Springer-Verlag, Berlin/Heidelberg}, isbn = {ISBN 3-540-61269-6}, year = {1997}, language = {en} } @inproceedings{StallingHegeHoellerer1995, author = {Stalling, Detlev and Hege, Hans-Christian and H{\"o}llerer, Tobias}, title = {Visualization and 3D-Interaction for Hyperthermia Treatment Planning}, series = {Proc. CAR 95 Computer Assisted Radiology, 9th International Symposium and Exhibition}, booktitle = {Proc. CAR 95 Computer Assisted Radiology, 9th International Symposium and Exhibition}, address = {Berlin}, pages = {1216 -- 1222}, year = {1995}, language = {en} } @misc{PolthierSullivanZiegleretal., author = {Polthier, Konrad and Sullivan, John and Ziegler, G{\"u}nter M. and Hege, Hans-Christian}, title = {Visualization}, series = {MATHEON - Mathematics for Key Technologies}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and et al.,}, publisher = {European Mathematical Society}, isbn = {978-3-03719-137-8}, doi = {10.4171/137}, pages = {335 -- 339}, language = {en} } @article{ZachowMuiggHildebrandtetal.2009, author = {Zachow, Stefan and Muigg, Philipp and Hildebrandt, Thomas and Doleisch, Helmut and Hege, Hans-Christian}, title = {Visual Exploration of Nasal Airflow}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {8}, doi = {10.1109/TVCG.2009.198}, pages = {1407 -- 1414}, year = {2009}, language = {en} } @article{ProhaskaHegeGiehletal.2002, author = {Prohaska, Steffen and Hege, Hans-Christian and Giehl, Michael and Gowin, Wolfgang}, title = {Visual Analysis of Trabecular Bone Structure}, series = {Journal of Gravitational Physiology}, volume = {9 (1)}, journal = {Journal of Gravitational Physiology}, pages = {171 -- 172}, year = {2002}, language = {en} } @article{HegeKoppitzMarquardtetal.2011, author = {Hege, Hans-Christian and Koppitz, Michael and Marquardt, Falko and McDonald, Chris and Mielack, Christopher}, title = {Visual Analysis of Quantum Physics Data}, series = {Quantum Dynamic Imaging}, journal = {Quantum Dynamic Imaging}, publisher = {Springer}, doi = {10.1007/978-1-4419-9491-2_6}, pages = {71 -- 87}, year = {2011}, language = {en} } @inproceedings{Hege, author = {Hege, Hans-Christian}, title = {Visual analysis of molecular dynamics data using geometric and topological methods}, series = {Forum "Math for Industry" 2014}, volume = {57}, booktitle = {Forum "Math for Industry" 2014}, publisher = {Institute of Mathematics for Industry, Kyushu University}, address = {Fukuoka, Japan}, pages = {45 -- 46}, language = {en} } @inproceedings{SchmidtEhrenbergHege2005, author = {Schmidt-Ehrenberg, Johannes and Hege, Hans-Christian}, title = {Visual analysis of molecular conformations by means of a dynamic density mixture model}, series = {Computational Life Sciences: First International Symposium, CompLife 2005}, volume = {3695}, booktitle = {Computational Life Sciences: First International Symposium, CompLife 2005}, publisher = {Springer}, address = {Konstanz, Germany}, pages = {229 -- 240}, year = {2005}, language = {en} } @misc{KroneKozlikovaLindowetal., author = {Krone, Michael and Kozlikova, Barbora and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Parulek, Julius and Hege, Hans-Christian and Viola, Ivan}, title = {Visual Analysis of Biomolecular Cavities: State of the Art}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60193}, abstract = {In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field.}, language = {en} }