@inproceedings{DeuflhardHege1994, author = {Deuflhard, Peter and Hege, Hans-Christian}, title = {Scientific Computing in der Theoretischen Physik - Collected Abstracts}, series = {Tagung organisiert von der DMV-Fachgruppe Scientific Computing in Kooperation mit dem GAMM Fachausschuss Scientific Computing}, booktitle = {Tagung organisiert von der DMV-Fachgruppe Scientific Computing in Kooperation mit dem GAMM Fachausschuss Scientific Computing}, address = {Berlin}, year = {1994}, language = {en} } @inproceedings{GrammelBackWunderlingetal.1994, author = {Grammel, Martin and Back, Godmar and Wunderling, Roland and Hege, Hans-Christian}, title = {Ein paralleles C++/C-Programmiermodell f{\"u}r ein objektorientiertes B\&C-Framework}, series = {GI/ITG-Workshop, Sept.1994, Mitteilungen der Fachgruppe PARS der Gesellschaft f{\"u}r Informatik (GI)}, volume = {13}, booktitle = {GI/ITG-Workshop, Sept.1994, Mitteilungen der Fachgruppe PARS der Gesellschaft f{\"u}r Informatik (GI)}, address = {Potsdam}, pages = {50 -- 59}, year = {1994}, language = {en} } @inproceedings{WunderlingGrammelHege1994, author = {Wunderling, Roland and Grammel, Martin and Hege, Hans-Christian}, title = {Parallele LU-Zerlegung großer, unsymmetrischer, d{\"u}nn besetzter Matrizen bei hohen Kommunikationslatenzen}, series = {GI/ITG-Workshop, Sept.1994, Mitteilungen der Fachgruppe PARS der Gesellschaft f{\"u}r Informatik (GI)}, volume = {13}, booktitle = {GI/ITG-Workshop, Sept.1994, Mitteilungen der Fachgruppe PARS der Gesellschaft f{\"u}r Informatik (GI)}, address = {Potsdam}, pages = {191 -- 200}, year = {1994}, language = {en} } @article{AkemiForcrandFujisakietal.1992, author = {Akemi, K. and Forcrand, Ph. de and Fujisaki, M. and Hashimoto, T. and Hege, Hans-Christian and Hioki, S. and Makino, J. and Miyamura, O. and Nakamura, A. and Okuda, M. and Stamatescu, I. O. and Tago, Yoshio and Takaishi, T.}, title = {SU(3) Renormalization Group Study on Parallel Computer AP 1000}, series = {Nucl. Phys. B Proc. Suppl. 26}, journal = {Nucl. Phys. B Proc. Suppl. 26}, doi = {10.1016/0920-5632(92)90293-2}, pages = {420 -- 422}, year = {1992}, language = {en} } @article{AkemiForcrandFujisakietal.1992, author = {Akemi, K. and Forcrand, Ph. de and Fujisaki, M. and Hashimoto, T. and Hege, Hans-Christian and Hioki, S. and Makino, J. and Miyamura, O. and Nakamura, A. and Okuda, M. and Stamatescu, I. O. and Tago, Yoshio and Takaishi, T.}, title = {QCD on the Highly Parallel Computer AP 1000}, series = {Nucl. Phys. B Proc. Suppl. 26}, journal = {Nucl. Phys. B Proc. Suppl. 26}, doi = {10.1016/0920-5632(92)90358-Y}, pages = {644 -- 646}, year = {1992}, language = {en} } @inproceedings{HegeStueben1991, author = {Hege, Hans-Christian and St{\"u}ben, Hinnerk}, title = {Vectorization and Parallelization of Irregular Problems via Graph Coloring}, series = {Proc. of the ACM Int. Conf. on Supercomputing}, booktitle = {Proc. of the ACM Int. Conf. on Supercomputing}, address = {Cologne}, doi = {10.1145/109025.109042}, pages = {47 -- 56}, year = {1991}, language = {en} } @inproceedings{StallingHege1996, author = {Stalling, Detlev and Hege, Hans-Christian}, title = {Intelligent Scissors for Medical Image Segmentation}, series = {Tagungsband zum 4. Freiburger Workshop Digitale Bildverarbeitung in der Medizin}, booktitle = {Tagungsband zum 4. Freiburger Workshop Digitale Bildverarbeitung in der Medizin}, address = {Freiburg}, pages = {32 -- 36}, year = {1996}, language = {en} } @inproceedings{StallingSeebassHegeetal.1996, author = {Stalling, Detlev and Seebaß, Martin and Hege, Hans-Christian and Wust, Peter and Deuflhard, Peter and Felix, Roland}, title = {HyperPlan - an Integrated System for Treatment Planning in Regional Hyperthermia}, series = {Proceedings of the 17th Congress on Hyperthermic Oncology}, volume = {2}, booktitle = {Proceedings of the 17th Congress on Hyperthermic Oncology}, address = {Rome, Italy}, pages = {552 -- 554}, year = {1996}, language = {en} } @article{Hege1996, author = {Hege, Hans-Christian}, title = {Problems and Solutions: Product of Chebyshev Polynomials}, series = {Orthogonal Polynomials and Special Functions}, volume = {6 (2)}, journal = {Orthogonal Polynomials and Special Functions}, pages = {12}, year = {1996}, language = {en} } @inproceedings{HoellererToenniesHegeetal.1995, author = {H{\"o}llerer, Tobias and T{\"o}nnies, Klaus and Hege, Hans-Christian and Stalling, Detlev}, title = {Volume Rendering on Irregular Grids (Abstract)}, series = {Int. Workshop on Mathematics and Visualization}, booktitle = {Int. Workshop on Mathematics and Visualization}, address = {Berlin, Germany}, year = {1995}, language = {en} } @article{HoellererToenniesHegeetal.1995, author = {H{\"o}llerer, Tobias and T{\"o}nnies, Klaus and Hege, Hans-Christian and Stalling, Detlev}, title = {Der Einfluß der Datenapproximation bei Volume Rendering durch ein Emissions/Absorptions-Modell}, series = {Visualisierung - Dynamik und Komplexit{\"a}t}, journal = {Visualisierung - Dynamik und Komplexit{\"a}t}, publisher = {CEVIS Universit{\"a}t Bremen und Fachgruppe 4.2.1 der Gesellschaft f{\"u}r Informatik}, address = {Bremen, Germany}, year = {1995}, language = {en} } @inproceedings{StallingHege1995, author = {Stalling, Detlev and Hege, Hans-Christian}, title = {Fast and Resolution-Independent Line Integral Convolution}, series = {Proceedings of SIGGRAPH '95}, booktitle = {Proceedings of SIGGRAPH '95}, publisher = {Computer Graphics Annual Conference Series, ACM SIGGRAPH}, address = {Los Angeles, California}, doi = {10.1145/218380.218448}, pages = {249 -- 256}, year = {1995}, language = {en} } @article{Hege1994, author = {Hege, Hans-Christian}, title = {Scaling study of pure SU(3) theory - the QCD-TARO collaboration}, series = {Nucl. Phys. B Proc. Suppl.}, volume = {34}, journal = {Nucl. Phys. B Proc. Suppl.}, doi = {10.1016/0920-5632(94)90358-1}, pages = {246 -- 252}, year = {1994}, language = {en} } @article{HashimotoHege1993, author = {Hashimoto, T. and Hege, Hans-Christian}, title = {QCD on the Massively Parallel Computer AP 1000}, series = {Int. J. Mod. Phys.}, volume = {4}, journal = {Int. J. Mod. Phys.}, number = {6}, doi = {10.1142/S0129183193000975}, pages = {1233 -- 1253}, year = {1993}, language = {en} } @article{HashimotoHege1993, author = {Hashimoto, T. and Hege, Hans-Christian}, title = {Autocorrelation in Updating Pure SU(3) Lattice Gauge Theory by the Use of Overrelaxed Algorithms}, series = {Nucl. Phys. B Proc. Suppl.}, volume = {30}, journal = {Nucl. Phys. B Proc. Suppl.}, doi = {10.1016/0920-5632(93)90202-H}, pages = {253 -- 256}, year = {1993}, language = {en} } @article{HashimotoHege1993, author = {Hashimoto, T. and Hege, Hans-Christian}, title = {Study of Spatial Size Effects in Quenched Wilson Hadron Spectroscopy at beta = 6.3}, series = {Nucl. Phys. B Proc. Suppl.}, volume = {30}, journal = {Nucl. Phys. B Proc. Suppl.}, doi = {10.1016/0920-5632(93)90230-4}, pages = {373 -- 376}, year = {1993}, language = {en} } @article{HashimotoHege1993, author = {Hashimoto, T. and Hege, Hans-Christian}, title = {Monte Carlo Renormalization Study at Large beta in the Confinement Region}, series = {Nuclear Phys. B. Proc. Suppl.}, volume = {30}, journal = {Nuclear Phys. B. Proc. Suppl.}, doi = {10.1016/0920-5632(93)90263-6}, pages = {517 -- 520}, year = {1993}, language = {en} } @misc{WunderlingHege1992, author = {Wunderling, Roland and Hege, Hans-Christian}, title = {AGIL - the Adaptable Graphical Interface Layer, Programmierer-Handbuch}, publisher = {Interner Report, Konrad-Zuse-Zentrum f{\"u}r Informationstechnik Berlin (ZIB), Germany}, pages = {34pp.}, year = {1992}, language = {en} } @article{HegeKnecht1992, author = {Hege, Hans-Christian and Knecht, Renate}, title = {Conference Report: Parallel Computing 91}, series = {Parallel Computing}, volume = {18}, journal = {Parallel Computing}, number = {4}, pages = {473 -- 476}, year = {1992}, language = {en} } @article{HashimotoHege1992, author = {Hashimoto, T. and Hege, Hans-Christian}, title = {Hadron Spectroscopy on a 32^3 * 48 Lattice}, series = {Nucl. Phys. B Proc. Suppl. 26}, journal = {Nucl. Phys. B Proc. Suppl. 26}, doi = {10.1016/0920-5632(92)90257-S}, pages = {293 -- 295}, year = {1992}, language = {en} } @inproceedings{DercksenEggerHegeetal.2012, author = {Dercksen, Vincent J. and Egger, Robert and Hege, Hans-Christian and Oberlaender, Marcel}, title = {Synaptic Connectivity in Anatomically Realistic Neural Networks: Modeling and Visual Analysis}, series = {Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM)}, booktitle = {Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM)}, address = {Norrk{\"o}ping, Sweden}, doi = {10.2312/VCBM/VCBM12/017-024}, pages = {17 -- 24}, year = {2012}, language = {en} } @misc{PfisterKaynigBothaetal.2012, author = {Pfister, Hanspeter and Kaynig, Verena and Botha, Charl and Bruckner, Stefan and Dercksen, Vincent J. and Hege, Hans-Christian and Roerdink, Jos}, title = {Visualization in Connectomics}, doi = {10.1007/978-1-4471-6497-5_21}, year = {2012}, language = {en} } @article{WeberGreenanProhaskaetal.2012, author = {Weber, Britta and Greenan, Garrett and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian and M{\"u}ller-Reichert, Thomas and Hyman, Anthony and Verbavatz, Jean-Marc}, title = {Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos}, series = {Journal of Structural Biology}, volume = {178}, journal = {Journal of Structural Biology}, number = {2}, doi = {10.1016/j.jsb.2011.12.004}, pages = {129 -- 138}, year = {2012}, language = {en} } @article{KastenReininghausHotzetal.2011, author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans-Christian}, title = {Two-Dimensional Time-Dependent Vortex Regions Based on the Acceleration Magnitude}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, pages = {2080 -- 2087target}, year = {2011}, language = {en} } @article{LindowBaumHege2011, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Voronoi-Based Extraction and Visualization of Molecular Paths}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2011.259}, pages = {2025 -- 2034}, year = {2011}, language = {en} } @article{LacarellePMoeckPaschereitetal.2010, author = {Lacarelle, Arnaud and P. Moeck, Jonas and Paschereit, Christian and Gelbert, Gregor and King, Rudibert and M. Luchtenburg, Dirk and Noack, Bernd R. and Kasten, Jens and Hege, Hans-Christian}, title = {Modeling a Fuel/Air Mixing to Control the Pressure Pulsations and NOx Emissions in a Lean Premixed Combustor}, series = {Active Flow Control II}, volume = {108}, journal = {Active Flow Control II}, publisher = {Springer, Berlin}, doi = {10.1007/978-3-642-11735-0_20}, pages = {307 -- 321}, year = {2010}, language = {en} } @article{LindowBaumProhaskaetal.2010, author = {Lindow, Norbert and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {Accelerated Visualization of Dynamic Molecular Surfaces}, series = {Comput. Graph. Forum}, volume = {29}, journal = {Comput. Graph. Forum}, doi = {10.1111/j.1467-8659.2009.01693.x}, pages = {943 -- 952}, year = {2010}, language = {en} } @inproceedings{ReininghausGuentherHotzetal.2010, author = {Reininghaus, Jan and G{\"u}nther, David and Hotz, Ingrid and Prohaska, Steffen and Hege, Hans-Christian}, title = {TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory}, series = {Mathematical Software - ICMS 2010}, volume = {6327}, booktitle = {Mathematical Software - ICMS 2010}, publisher = {Springer}, doi = {10.1007/978-3-642-15582-6_35}, pages = {198 -- 208}, year = {2010}, language = {en} } @article{RybakKussLameckeretal.2010, author = {Rybak, J{\"u}rgen and Kuß, Anja and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian and Lienhard, Matthias and Singer, Jochen and Neubert, Kerstin and Menzel, Randolf}, title = {The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System}, series = {Front. Syst. Neurosci.}, volume = {4}, journal = {Front. Syst. Neurosci.}, number = {30}, doi = {10.3389/fnsys.2010.00030}, year = {2010}, language = {en} } @incollection{KastenWeinkaufPetzetal.2010, author = {Kasten, Jens and Weinkauf, Tino and Petz, Christoph and Hotz, Ingrid and Noack, Bernd R. and Hege, Hans-Christian}, title = {Extraction of Coherent Structures from Natural and Actuated Flows}, series = {Active Flow Control II}, volume = {108}, booktitle = {Active Flow Control II}, publisher = {Springer, Berlin}, isbn = {978-3-642-11734-3}, doi = {10.1007/978-3-642-11735-0_24}, pages = {373 -- 387}, year = {2010}, language = {en} } @article{OttoGermerHegeetal.2010, author = {Otto, Mathias and Germer, Tobias and Hege, Hans-Christian and Theisel, Holger}, title = {Uncertain 2D Vector Field Topology}, series = {Comput. Graph. Forum}, volume = {29}, journal = {Comput. Graph. Forum}, doi = {10.1111/j.1467-8659.2009.01604.x}, pages = {347 -- 356}, year = {2010}, language = {en} } @article{GoubergritsThamsenBertheetal.2010, author = {Goubergrits, Leonid and Thamsen, Bente and Berthe, Andr{\´e} and Poethke, Jens and Kertzscher, Ulrich and Affeld, Klaus and Petz, Christoph and Hege, Hans-Christian and Hoch, Heinrich and Spuler, Andreas}, title = {In Vitro Study of Near-Wall Flow in a Cerebral Aneurysm Model with and without Coils}, series = {American Journal of Neuroradiology}, volume = {31:8}, journal = {American Journal of Neuroradiology}, doi = {10.3174/ajnr.A2121}, pages = {1521 -- 1528}, year = {2010}, language = {en} } @article{HegeLaidlawMachiraju2010, author = {Hege, Hans-Christian and Laidlaw, David and Machiraju, Raghu}, title = {Guest Editor's Introduction: Special Section on Volume Graphics and Point-Based Graphics}, series = {IEEE Trans. Vis. Comput. Graph.}, volume = {16}, journal = {IEEE Trans. Vis. Comput. Graph.}, number = {4}, doi = {10.1109/TVCG.2010.72}, pages = {531 -- 532}, year = {2010}, language = {en} } @article{LindowBaumBondaretal.2013, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Exploring cavity dynamics in biomolecular systems}, series = {BMC Bioinformatics}, volume = {14}, journal = {BMC Bioinformatics}, edition = {(Suppl 19):S5}, doi = {10.1186/1471-2105-14-S19-S5}, year = {2013}, language = {en} } @article{PoethkowPetzHege2013, author = {P{\"o}thkow, Kai and Petz, Christoph and Hege, Hans-Christian}, title = {Approximate Level-Crossing Probabilities for Interactive Visualization of Uncertain Isocontours}, series = {International Journal for Uncertainty Quantification}, volume = {3}, journal = {International Journal for Uncertainty Quantification}, number = {2}, doi = {10.1615/Int.J.UncertaintyQuantification.2012003958}, pages = {101 -- 117}, year = {2013}, language = {en} } @misc{HombergBaumWiebeletal.2014, author = {Homberg, Ulrike and Baum, Daniel and Wiebel, Alexander and Prohaska, Steffen and Hege, Hans-Christian}, title = {Definition, Extraction, and Validation of Pore Structures in Porous Materials}, series = {Topological Methods in Data Analysis and Visualization III}, journal = {Topological Methods in Data Analysis and Visualization III}, editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald}, publisher = {Springer}, doi = {10.1007/978-3-319-04099-8_15}, pages = {235 -- 248}, year = {2014}, language = {en} } @inproceedings{RosanwoPetzProhaskaetal.2009, author = {Rosanwo, Olufemi and Petz, Christoph and Prohaska, Steffen and Hotz, Ingrid and Hege, Hans-Christian}, title = {Dual Streamline Seeding}, series = {Proceedings of the IEEE Pacific Visualization Symposium}, booktitle = {Proceedings of the IEEE Pacific Visualization Symposium}, editor = {Eades, Peter and Ertl, Thomas and Shen, Han-Wei}, address = {Beijing, China}, pages = {9 -- 16}, year = {2009}, language = {en} } @inproceedings{RybakKussHolleretal.2009, author = {Rybak, J{\"u}rgen and Kuß, Anja and Holler, Wolfgang and Brandt, Robert and Hege, Hans-Christian and Menzel, Randolf}, title = {The HoneyBee Standard Brain (HSB) - a versatile atlas tool for integrating data and data exchange in the neuroscience community}, series = {BMC Neuroscience}, volume = {10 (Suppl 1):P1}, booktitle = {BMC Neuroscience}, doi = {10.1186/1471-2202-10-S1-P1}, year = {2009}, language = {en} } @article{OberlaenderDercksenEggeretal.2009, author = {Oberlaender, Marcel and Dercksen, Vincent J. and Egger, Robert and Gensel, Maria and Sakmann, Bert and Hege, Hans-Christian}, title = {Automated three-dimensional detection and counting of neuron somata}, series = {Journal of Neuroscience Methods}, volume = {180}, journal = {Journal of Neuroscience Methods}, number = {1}, doi = {10.1016/j.jneumeth.2009.03.008}, pages = {147 -- 160}, year = {2009}, language = {en} } @article{GoubergritsWeberPetzetal.2009, author = {Goubergrits, Leonid and Weber, Sarah and Petz, Christoph and Spuler, Andreas and P{\"o}thke, Jens and Berthe, Andr{\´e} and Hege, Hans-Christian}, title = {Wall-PIV as a Near Wall Flow Validation Tool for CFD}, series = {Journal of Visualization}, volume = {12}, journal = {Journal of Visualization}, number = {3}, pages = {241 -- 250}, year = {2009}, language = {en} } @article{GoubergritsWellnhoferKertzscheretal.2009, author = {Goubergrits, Leonid and Wellnhofer, Ernst and Kertzscher, Ulrich and Affeld, Klaus and Petz, Christoph and Hege, Hans-Christian}, title = {Coronary Artery WSS Profiling Using a Geometry Reconstruction Based on Biplane Angiography}, series = {Annals of Biomedical Engineering}, volume = {37}, journal = {Annals of Biomedical Engineering}, number = {4}, publisher = {Springer}, doi = {s10439-009-9656-7}, pages = {682 -- 691}, year = {2009}, language = {en} } @book{HegeEds1998, author = {Hege, Hans-Christian and (Eds.), Konrad}, title = {Mathematical Visualization - Algorithms, Applications, and Numerics}, publisher = {Springer}, address = {Heidelberg}, isbn = {ISBN 3-540-63991-8}, year = {1998}, language = {en} } @book{HegePolthier1998, author = {Hege, Hans-Christian and Polthier, Konrad}, title = {VideoMath - Festival at ICM 98}, series = {Springer VideoMath}, journal = {Springer VideoMath}, isbn = {978-3-540-21385-7}, year = {1998}, language = {en} } @article{CourniaAllenAndricioaeietal.2015, author = {Cournia, Zoe and Allen, Toby W. and Andricioaei, Ioan and Antonny, Bruno and Baum, Daniel and Brannigan, Grace and Buchete, Nicolae-Viorel and Deckman, Jason T. and Delemotte, Lucie and del Val, Coral and Friedman, Ran and Gkeka, Paraskevi and Hege, Hans-Christian and H{\´e}nin, J{\´e}r{\^o}me and Kasimova, Marina A. and Kolocouris, Antonios and Klein, Michael L. and Khalid, Syma and Lemieux, Joanne and Lindow, Norbert and Roy, Mahua and Selent, Jana and Tarek, Mounir and Tofoleanu, Florentina and Vanni, Stefano and Urban, Sinisa and Wales, David J. and Smith, Jeremy C. and Bondar, Ana-Nicoleta}, title = {Membrane Protein Structure, Function and Dynamics: A Perspective from Experiments and Theory}, series = {Journal of Membrane Biology}, volume = {248}, journal = {Journal of Membrane Biology}, number = {4}, doi = {10.1007/s00232-015-9802-0}, pages = {611 -- 640}, year = {2015}, language = {en} } @article{MuecklichWebelAboulfadletal., author = {M{\"u}cklich, Frank and Webel, Johannes and Aboulfadl, Hisham and Lindow, Norbert and Hege, Hans-Christian}, title = {Correlative Tomography - Extraction of Reliable Information with Adequate Resolution from mm Scale Down to Sub-nm Scale}, series = {Microsc. Microanal.}, volume = {20}, journal = {Microsc. Microanal.}, number = {Suppl 3}, doi = {10.1017/S1431927614005911}, pages = {838 -- 839}, language = {en} } @inproceedings{EngelkeKuhnFlatkenetal.2015, author = {Engelke, Wito and Kuhn, Alexander and Flatken, Markus and Chen, Fang and Hege, Hans-Christian and Gerndt, Andreas and Hotz, Ingrid}, title = {Atmospheric Impact of Volcano Eruptions}, series = {Proceedings IEEE SciVis 2014}, booktitle = {Proceedings IEEE SciVis 2014}, year = {2015}, abstract = {The analysis of data that captures volcanic eruptions and their atmospheric aftermath plays an important role for domain experts to gain a deeper understanding of the volcanic eruption and their consequences for atmosphere, climate and air traffic. Thereby, one major challenge is to extract and combine the essential information, which is spread over various, mostly sparse data sources. This requires a careful integration of each data set with its strength and limitations. The sparse, but more reliable measurement data is mainly used to calibrate the more dense simulation data. This work combines a collection of visualization approaches into an exploitative framework. The goal is to support the domain experts to build a complete picture of the situation. But it is also important to understand the individual data sources, the wealth of their information and the quality of the simulation results. All presented methods are designed for direct interaction with the data from different perspectives rather than the sole generation of some final images.}, language = {en} } @misc{DeuflhardHege, author = {Deuflhard, Peter and Hege, Hans-Christian}, title = {Raumtiefe in Malerei und Computergrafik}, series = {R{\"a}ume - Bilder - Kulturen}, journal = {R{\"a}ume - Bilder - Kulturen}, editor = {Lepper, Verena and Deuflhard, Peter and Markschies, Christoph}, publisher = {Walter De Gruyter}, isbn = {978-3-11-035993-0}, pages = {33 -- 46}, abstract = {Einf{\"u}hrung: Die Tiefenwirkung dreidimensionaler R{\"a}ume in einem zweidimensionalen Bild einzufangen, ist ein Faszinosum nahezu aller Kulturen der Menschheitsgeschichte. Der vorliegende Aufsatz folgt den Spuren dieses Faszinosums, vergleichend in der Malerei und der mathematisierten Computergrafik. Die Entdeckung der Zentralperspektive in der italienischen Renaissance zeigt bereits den engen Zusammenhang von Malerei und Mathematik. Auf der Suche nach Maltechniken, mit denen Raumtiefe bildnerisch dargestellt werden kann, beginnen wir in Kap. 2 mit einem chronologischen Gang durch verschiedene Epochen der europ{\"a}ischen Malerei. Hieraus abgeleitete Prinzipien, soweit sie im Rechner realisierbar scheinen, stellen wir in Kap. 3 am Beispiel moderner Methoden der mathematischen Visualisierung vor.}, language = {de} } @article{KastenReininghausHotzetal.2016, author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans-Christian and Noack, Bernd and Daviller, Guillaume and Morzyński, Marek}, title = {Acceleration feature points of unsteady shear flows}, series = {Archives of Mechanics}, volume = {68}, journal = {Archives of Mechanics}, number = {1}, pages = {55 -- 80}, year = {2016}, abstract = {A framework is proposed for extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance. The minima of the acceleration magnitude, i.e. a superset of the acceleration zeros, are extracted and discriminated into vortices and saddle points --- based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These features are tracked in time with a robust algorithm for tracking features. Thus a space-time hierarchy of the minima is built and vortex merging events are detected. The acceleration feature extraction strategy is applied to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of pressure field and minima of λ2.}, language = {en} } @inproceedings{AgudoJacomeHegePaetschetal., author = {Agudo J{\´a}come, Leonardo and Hege, Hans-Christian and Paetsch, Olaf and P{\"o}thkow, Kai}, title = {3D Reconstruction, Visualization and Quantification of Dislocations from Transmission Electron Microscopy Stereo-Pairs}, series = {Microscopy and Microanalysis 2016, July 24-28 Columbus, Ohio}, booktitle = {Microscopy and Microanalysis 2016, July 24-28 Columbus, Ohio}, language = {en} } @inproceedings{KuhnEngelkeFlatkenetal., author = {Kuhn, Alexander and Engelke, Wito and Flatken, Markus and Hege, Hans-Christian and Hotz, Ingrid}, title = {Topology-based Analysis for Multimodal Atmospheric Data of Volcano Eruptions}, series = {Topological Methods in Data Analysis and Visualization IV}, booktitle = {Topological Methods in Data Analysis and Visualization IV}, publisher = {Springer}, address = {Cham, Schweiz}, doi = {10.1007/978-3-319-44684-4_2}, pages = {35 -- 50}, language = {en} } @article{GuentherKuhnHegeetal., author = {G{\"u}nther, Tobias and Kuhn, Alexander and Hege, Hans-Christian and Theisel, Holger}, title = {MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields}, series = {Computer Graphics Forum}, volume = {35}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/cgf.12914}, pages = {381 -- 390}, language = {en} } @inproceedings{SagnolHegeWeiser, author = {Sagnol, Guillaume and Hege, Hans-Christian and Weiser, Martin}, title = {Using sparse kernels to design computer experiments with tunable precision}, series = {22nd Intern. Conf. on Computational Statistics - COMPSTAT 2016, Oviedo, Spain, 23-26 August 2016, Proceedings ISBN 978-90-73592-36-0}, booktitle = {22nd Intern. Conf. on Computational Statistics - COMPSTAT 2016, Oviedo, Spain, 23-26 August 2016, Proceedings ISBN 978-90-73592-36-0}, pages = {397 -- 408}, language = {en} } @inproceedings{BaumMahlowLameckeretal., author = {Baum, Daniel and Mahlow, Kristin and Lamecker, Hans and Zachow, Stefan and M{\"u}ller, Johannes and Hege, Hans-Christian}, title = {The Potential of Surface-based Geometric Morphometrics for Evolutionary Studies: An Example using Dwarf Snakes (Eirenis)}, series = {Abstract in DigitalSpecimen 2014}, booktitle = {Abstract in DigitalSpecimen 2014}, abstract = {Geometric morphometrics plays an important role in evolutionary studies. The state-of-the-art in this field are landmark-based methods. Since the landmarks usually need to be placed manually, only a limited number of landmarks are generally used to represent the shape of an anatomical structure. As a result, shape characteristics that cannot be properly represented by small sets of landmarks are disregarded. In this study, we present a method that is free of this limitation. The method takes into account the whole shape of an anatomical structure, which is represented as a surface, hence the term 'surface-based morphometrics'. Correspondence between two surfaces is established by defining a partitioning of the surfaces into homologous surface patches. The first step for the generation of a surface partitioning is to place landmarks on the surface. Subsequently, the landmarks are connected by curves lying on the surface. The curves, called 'surface paths', might either follow specific anatomical features or they can be geodesics, that is, shortest paths on the surface. One important requirement, however, is that the resulting surface path networks are topologically equivalent across all surfaces. Once the surface path networks have been defined, the surfaces are decomposed into patches according to the path networks. This approach has several advantages. One of them is that we can discretize the surface by as many points as desired. Thus, even fine shape details can be resolved if this is of interest for the study. Since a point discretization is used, another advantage is that well-established analysis methods for landmark-based morphometrics can be utilized. Finally, the shapes can be easily morphed into one another, thereby greatly supporting the understanding of shape changes across all considered specimens. To show the potential of the described method for evolutionary studies of biological specimens, we applied the method to the para-basisphenoid complex of the snake genus Eirenis. By using this anatomical structure as example, we present all the steps that are necessary for surface-based morphometrics, including the segmentation of the para-basisphenoid complex from micro-CT data sets. We also show some first results using statistical analysis as well as classification methods based on the presented technique.}, language = {en} } @misc{GuentherKuhnHegeetal., author = {G{\"u}nther, Tobias and Kuhn, Alexander and Hege, Hans-Christian and Gross, Markus and Theisel, Holger}, title = {Progressive Monte-Carlo Rendering of Atmospheric Flow Features Across Scales}, series = {69th Annual Meeting of the APS Division of Fluid Dynamics, Gallery of Fluid Motion, Nov 20-22, 2016, Portland, OR, USA.}, journal = {69th Annual Meeting of the APS Division of Fluid Dynamics, Gallery of Fluid Motion, Nov 20-22, 2016, Portland, OR, USA.}, doi = {10.1103/APS.DFD.2016.GFM.P0030}, abstract = {To improve existing weather prediction and reanalysis capabilities, high-resolution and multi-modal climate data becomes an increasingly important topic. The advent of increasingly dense numerical simulation of atmospheric phenomena, provides new means to better understand dynamic processes and to visualize structural flow patterns that remain hidden otherwise. In the presented illustrations we demonstrate an advanced technique to visualize multiple scales of dense flow fields and Lagrangian patterns therein, simulated by state-of-the-art simulation models for each scale. They provide a deeper insight into the structural differences and patterns that occur on each scale and highlight the complexity of flow phenomena in our atmosphere.}, language = {en} } @inproceedings{ArltLindowBaumetal., author = {Arlt, Tobias and Lindow, Norbert and Baum, Daniel and Hilger, Andre and Mahnke, Ingo and Hege, Hans-Christian and Lepper, Verena and Siopi, Tzulia and Mahnke, Heinz.Eberhard}, title = {Virtual Access to Hidden Texts - Study of Ancient Papyri}, series = {Eighth Joint BER II and BESSY II User Meeting, Dec 7-9, 2016, Berlin, Germany}, booktitle = {Eighth Joint BER II and BESSY II User Meeting, Dec 7-9, 2016, Berlin, Germany}, abstract = {When physical unfolding/unrolling of papyri is not possible or too dangerous for preserving the precious object, tomographic approaches may be the ap- propriate alternative. Requirements are the resolution and the contrast to distinguish writing and substrate. The steps to be performed are the following: (1) Select the object of interest (archaeological arguments, cultural back- ground of the object, etc.). (2) Find the proper physical procedure, especially with respect to contrast, take the tomographic data, e.g. by absorption x-ray tomography. (3) Apply mathematical unfolding transformations to the tomographic data, in order to obtain a 2d-planar reconstruction of text.}, language = {en} } @inproceedings{KuhnHege, author = {Kuhn, Alexander and Hege, Hans-Christian}, title = {Object-based visualization and evaluation of cloud-resolving simulations}, series = {Book of Abstracts, SCCS 2017 - Scaling Cascades in Complex Systems, Mar 27-29, 2017, Berlin, Germany}, booktitle = {Book of Abstracts, SCCS 2017 - Scaling Cascades in Complex Systems, Mar 27-29, 2017, Berlin, Germany}, abstract = {Recent advances in high-resolution, cloud resolving simulation models pose several challenges towards respective analysis methodologies. To enable efficient comparison and validation of such models efficient, scalable, and informative diagnostic procedures are mandatory. In this talk, an object-based evaluation scheme based on the notion of scalar field topology will be presented. The presentation will cover the application of topological clustering procedures for object identification, tracking, and the retrieval of object-based statistics. The pro-posed methodology is shown to enable an advanced in-depth evaluation and visualization of high cloud-resolving models. Using a newly developed large-scale high-resolution model (i.e., HD(CP)2 ICON), it will be demonstrated that the presented procedures are applicable to assess the model performance compared to measurements (e.g., radar, satellite) and standard operational models (COSMO) at different domains and spatial scales.}, language = {en} } @misc{PolthierSullivanZiegleretal., author = {Polthier, Konrad and Sullivan, John and Ziegler, G{\"u}nter M. and Hege, Hans-Christian}, title = {Visualization}, series = {MATHEON - Mathematics for Key Technologies}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and et al.,}, publisher = {European Mathematical Society}, isbn = {978-3-03719-137-8}, doi = {10.4171/137}, pages = {335 -- 339}, language = {en} } @misc{LameckerHegeTabelowetal., author = {Lamecker, Hans and Hege, Hans-Christian and Tabelow, Karsten and Polzehl, J{\"o}rg}, title = {Image Processing}, series = {MATHEON - Mathematics for Key Technologies}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and et al.,}, publisher = {European Mathematical Society}, doi = {10.4171/137}, pages = {359 -- 376}, language = {en} } @article{KramerNoackBaumetal., author = {Kramer, Tobias and Noack, Matthias and Baum, Daniel and Hege, Hans-Christian and Heller, Eric J.}, title = {Dust and gas emission from cometary nuclei: the case of comet 67P/Churyumov-Gerasimenko}, series = {Advances in Physics: X}, volume = {3}, journal = {Advances in Physics: X}, number = {1}, doi = {10.1080/23746149.2017.1404436}, pages = {1404436}, abstract = {Comets display with decreasing solar distance an increased emission of gas and dust particles, leading to the formation of the coma and tail. Spacecraft missions provide insight in the temporal and spatial variations of the dust and gas sources located on the cometary nucleus. For the case of comet 67P/Churyumov-Gerasimenko (67P/C-G), the long-term obser- vations from the Rosetta mission point to a homogeneous dust emission across the entire illuminated surface. Despite the homogeneous initial dis- tribution, a collimation in jet-like structures becomes visible. We propose that this observation is linked directly to the complex shape of the nucleus and projects concave topographical features into the dust coma. To test this hypothesis, we put forward a gas-dust description of 67P/C-G, where gravitational and gas forces are accurately determined from the surface mesh and the rotation of the nucleus is fully incorporated. The emerging jet-like structures persist for a wide range of gas-dust interactions and show a dust velocity dependent bending.}, language = {en} } @inproceedings{SakuraiHegeKuhnetal., author = {Sakurai, Daisuke and Hege, Hans-Christian and Kuhn, Alexander and Rust, Henning and Kern, Bastian and Breitkopf, Tom-Lukas}, title = {An Application-Oriented Framework for Feature Tracking in Atmospheric Sciences}, series = {Proceedings of 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV)}, booktitle = {Proceedings of 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV)}, doi = {10.1109/LDAV.2017.8231857}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66685}, pages = {96 -- 97}, abstract = {In atmospheric sciences, sizes of data sets grow continuously due to increasing resolutions. A central task is the comparison of spatiotemporal fields, to assess different simulations and to compare simulations with observations. A significant information reduction is possible by focusing on geometric-topological features of the fields or on derived meteorological objects. Due to the huge size of the data sets, spatial features have to be extracted in time slices and traced over time. Fields with chaotic component, i.e. without 1:1 spatiotemporal correspondences, can be compared by looking upon statistics of feature properties. Feature extraction, however, requires a clear mathematical definition of the features - which many meteorological objects still lack. Traditionally, object extractions are often heuristic, defined only by implemented algorithms, and thus are not comparable. This work surveys our framework designed for efficient development of feature tracking methods and for testing new feature definitions. The framework supports well-established visualization practices and is being used by atmospheric researchers to diagnose and compare data.}, language = {en} } @article{GuentherKuhnHegeetal., author = {G{\"u}nther, Tobias and Kuhn, Alexander and Hege, Hans-Christian and Gross, Markus and Theisel, Holger}, title = {Progressive Monte Carlo rendering of atmospheric flow features across scales}, series = {Physical Review Fluids}, volume = {2}, journal = {Physical Review Fluids}, doi = {10.1103/PhysRevFluids.2.090502}, pages = {09050-1 -- 09050-3}, abstract = {To improve existing weather prediction and reanalysis capabilities, high-resolution and multi-modal climate data becomes an increasingly important topic. The advent of increasingly dense numerical simulation of atmospheric phenomena, provides new means to better understand dynamic processes and to visualize structural flow patterns that remain hidden otherwise. In the presented illustrations we demonstrate an advanced technique to visualize multiple scales of dense flow fields and Lagrangian patterns therein, simulated by state-of-the-art simulation models for each scale. They provide a deeper insight into the structural differences and patterns that occur on each scale and highlight the complexity of flow phenomena in our atmosphere. This paper is associated with a poster winner of a 2016 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2016.GFM.P0030}, language = {en} } @article{BaumLindowHegeetal.2017, author = {Baum, Daniel and Lindow, Norbert and Hege, Hans-Christian and Lepper, Verena and Siopi, Tzulia and Kutz, Frank and Mahlow, Kristin and Mahnke, Heinz-Eberhard}, title = {Revealing hidden text in rolled and folded papyri}, series = {Applied Physics A}, volume = {123}, journal = {Applied Physics A}, number = {3}, doi = {10.1007/s00339-017-0808-6}, pages = {171}, year = {2017}, abstract = {Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds.}, language = {en} } @inproceedings{CoconuHege, author = {Coconu, Liviu and Hege, Hans-Christian}, title = {devEyes: Tangible Devices on Augmented Passive Surfaces}, series = {TEI '17 Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, Yokohama, Japan, March 20 - 23, 2017}, booktitle = {TEI '17 Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, Yokohama, Japan, March 20 - 23, 2017}, doi = {10.1145/3024969.3025065}, pages = {409 -- 411}, abstract = {We present a novel approach to turn smartphones/ tablets into tangible near-surface devices with augmented reality (AR) capability on virtually any passive surface, like desks, tables and wallboards. A low-cost optoelectronic add-on for the device back camera enables position tracking on an almost invisible printable fiducial marker grid. This approach is promising in terms of adoption potential because it can be used anywhere with existing devices, requires no dedicated hardware installations and is applicable to a broad range of real-world applications.}, language = {en} } @article{HeinzeDipankarHenkenetal., author = {Heinze, Rieke and Dipankar, Anurag and Henken, Cintia Carbajal and Moseley, Christopher and Sourdeval, Odran and Tr{\"o}mel, Silke and Xie, Xinxin and Adamidis, Panos and Ament, Felix and Baars, Holger and Barthlott, Christian and Behrendt, Andreas and Blahak, Ulrich and Bley, Sebastian and Brdar, Slavko and Brueck, Matthias and Crewell, Susanne and Deneke, Hartwig and Di Girolamo, Paolo and Evaristo, Raquel and Fischer, J{\"u}rgen and Frank, Christopher and Friederichs, Petra and G{\"o}cke, Tobias and Gorges, Ksenia and Hande, Luke and Hanke, Moritz and Hansen, Akio and Hege, Hans-Christian and Hose, Corinna and Jahns, Thomas and Kalthoff, Norbert and Klocke, Daniel and Kneifel, Stefan and Knippertz, Peter and Kuhn, Alexander and van Laar, Thriza and Macke, Andreas and Maurer, Vera and Mayer, Bernhard and Meyer, Catrin I. and Muppa, Shravan K. and Neggers, Roeland A. J. and Orlandi, Emiliano and Pantillon, Florian and Pospichal, Bernhard and R{\"o}ber, Niklas and Scheck, Leonhard and Seifert, Axel and Seifert, Patric and Senf, Fabian and Siligam, Pavan and Simmer, Clemens and Steinke, Sandra and Stevens, Bjorn and Wapler, Kathrin and Weniger, Michael and Wulfmeyer, Volker and Z{\"a}ngl, G{\"u}nther and Zhang, Dan and Quaas, Johannes}, title = {Large-eddy simulations over Germany using ICON: a comprehensive evaluation}, series = {Quarterly Journal of the Royal Meteorological Society}, volume = {143}, journal = {Quarterly Journal of the Royal Meteorological Society}, number = {702}, doi = {10.1002/qj.2947}, pages = {69 -- 100}, abstract = {Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model.}, language = {en} } @article{KozlikovaKroneFalketal., author = {Kozl{\´i}kov{\´a}, Barbora and Krone, Michael and Falk, Martin and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art Revisited}, series = {Computer Graphics Forum}, volume = {36}, journal = {Computer Graphics Forum}, number = {8}, doi = {10.1111/cgf.13072}, pages = {178 -- 204}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets.}, language = {en} } @book{HegeEds1997, author = {Hege, Hans-Christian and (Eds.), Konrad}, title = {Visualization and Mathematics - Experiments, Simulations and Environments}, publisher = {Springer-Verlag, Berlin/Heidelberg}, isbn = {ISBN 3-540-61269-6}, year = {1997}, language = {en} } @article{KramerNoackBaumetal., author = {Kramer, Tobias and Noack, Matthias and Baum, Daniel and Hege, Hans-Christian and Heller, Eric J.}, title = {Homogeneous dust emission and jet structure near active cometary nuclei: the case of 67P/Churyumov-Gerasimenko}, abstract = {We compute trajectories of dust grains starting from a homogeneous surface activity-profile on a irregularly shaped cometary nucleus. Despite the initially homogeneous dust distribution a collimation in jet-like structures becomes visible. The fine structure is caused by concave topographical features with similar bundles of normal vectors. The model incorporates accurately determined gravitational forces, rotation of the nucleus, and gas-dust interaction. Jet-like dust structures are obtained for a wide range of gas-dust interactions. For the comet 67P/Churyumov-Gerasimenko, we derive the global dust distribution around the nucleus and find several areas of agreement between the homogeneous dust emission model and the Rosetta observation of dust jets, including velocity-dependent bending of trajectories.}, language = {en} } @article{KroneKozlikovaLindowetal.2016, author = {Krone, Michael and Kozl{\´i}kov{\´a}, Barbora and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Parulek, Julius and Hege, Hans-Christian and Viola, Ivan}, title = {Visual Analysis of Biomolecular Cavities: State of the Art}, series = {Computer Graphics Forum}, volume = {35}, journal = {Computer Graphics Forum}, number = {3}, issn = {1467-8659}, doi = {10.1111/cgf.12928}, pages = {527 -- 551}, year = {2016}, abstract = {In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field.}, language = {en} } @article{HermannPohlTremblayetal., author = {Hermann, Gunter and Pohl, Vincent and Tremblay, Jean Christophe and Paulus, Beate and Hege, Hans-Christian and Schild, Axel}, title = {ORBKIT - A modular Python toolbox for cross-platform post-processing of quantum chemical wavefunction data}, series = {Journal of Computational Chemistry}, volume = {37}, journal = {Journal of Computational Chemistry}, number = {16}, doi = {10.1002/jcc.24358}, pages = {1511 -- 1520}, abstract = {ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wave function, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs. ORBKIT can be used as a standalone program to determine standard quantities, for example, the electron density, molecular orbitals, and derivatives thereof. The cornerstone of ORBKIT is its modular structure. The existing basic functions can be arranged in an individual way and can be easily extended by user-written modules to determine any other derived quantity. ORBKIT offers multiple output formats that can be processed by common visualization tools (VMD, Molden, etc.). Additionally, ORBKIT offers routines to order molecular orbitals computed at different nuclear configurations according to their electronic character and to interpolate the wavefunction between these configurations. The program is open-source under GNU-LGPLv3 license and freely available at https://github.com/orbkit/orbkit/. This article provides an overview of ORBKIT with particular focus on its capabilities and applicability, and includes several example calculations.}, language = {en} } @article{GoubergritsOsmanMevertetal., author = {Goubergrits, Leonid and Osman, Jan and Mevert, Ricardo and Kertzscher, Ulrich and P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Turbulence in blood damage modeling}, series = {The International Journal of Artificial Organs}, volume = {39}, journal = {The International Journal of Artificial Organs}, number = {4}, doi = {10.5301/ijao.5000476}, pages = {147 -- 210}, abstract = {Purpose: To account for the impact of turbulence in blood damage modeling, a novel approach based on the generation of instantaneous flow fields from RANS simulations is proposed. Methods: Turbulent flow in a bileaflet mechanical heart valve was simulated using RANS-based (SST k-ω) flow solver using FLUENT 14.5. The calculated Reynolds shear stress (RSS) field is transformed into a set of divergence-free random vector fields representing turbulent velocity fluctuations using procedural noise functions. To consider the random path of the blood cells, instantaneous flow fields were computed for each time step by summation of RSS-based divergence-free random and mean velocity fields. Using those instantaneous flow fields, instantaneous pathlines and corresponding point-wise instantaneous shear stresses were calculated. For a comparison, averaged pathlines based on mean velocity field and respective viscous shear stresses together with RSS values were calculated. Finally, the blood damage index (hemolysis) was integrated along the averaged and instantaneous pathlines using a power law approach and then compared. Results: Using RSS in blood damage modeling without a correction factor overestimates damaging stress and thus the blood damage (hemolysis). Blood damage histograms based on both presented approaches differ. Conclusions: A novel approach to calculate blood damage without using RSS as a damaging parameter is established. The results of our numerical experiment support the hypothesis that the use of RSS as a damaging parameter should be avoided.}, language = {en} } @misc{SieberKuhnHegeetal., author = {Sieber, Moritz and Kuhn, Alexander and Hege, Hans-Christian and Paschereit, C. Oliver and Oberleithner, Kilian}, title = {A Graphical Representation of the Spectral Proper Orthogonal Decomposition}, series = {68th Annual Meeting of the APS Division of Fluid Dynamics, Gallery of Fluid Motion, Nov 22-24, 2015, Boston, MA, USA.}, journal = {68th Annual Meeting of the APS Division of Fluid Dynamics, Gallery of Fluid Motion, Nov 22-24, 2015, Boston, MA, USA.}, abstract = {We consider the spectral proper orthogonal decomposition (SPOD) for experimental data of a turbulent swirling jet. This newly introduced method combines the advantages of spectral methods, such as Fourier decomposition or dynamic mode decomposition, with the energy-ranked proper orthogonal decomposition (POD). This poster visualizes how the modal energy spectrum transitions from the spectral purity of Fourier space to the sparsity of POD space. The transition is achieved by changing a single parameter - the width of the SPOD filter. Each dot in the 3D space corresponds to an SPOD mode pair, where the size and color indicates its spectral coherence. What we notice is that neither the Fourier nor the POD spectrum achieves a clear separation of the dynamic phenomena. Scanning through the graph from the front plane (Fourier) to the back plane (POD), we observe how three highly coherent SPOD modes emerge from the dispersed Fourier spectrum and later branch out into numerous POD modes. The spatial properties of these three individual SPOD modes are displayed in the back of the graph using line integral convolution colored by vorticity. The first two modes correspond to single-helical global instabilities that are well known for these flows. Their coexistence, however, has not been observed until now. The third mode is of double- helical shape and has not been observed so far. For this considered data set and many others, the SPOD is superior in identification of coherent structures in turbulent flows. Hopefully, it gives access to new fluid dynamic phenomena and enriches the available methods.}, language = {en} } @inproceedings{JacomeEggelerPoethkowetal., author = {J{\´a}come, Leonardo Agudo and Eggeler, Gunter and P{\"o}thkow, Kai and Paetsch, Olaf and Hege, Hans-Christian}, title = {Three-Dimensional Characterization of Superdislocation Interactions in the High Temperature and Low Stress Creep Regime of Ni-Base Superalloy Single Crystals}, series = {Proceedings of CREEP 2015 - 13th International Conference on Creep and Fracture of Engineering Materials and Structures, May 31 - June 4, 2015, Toulouse, France}, booktitle = {Proceedings of CREEP 2015 - 13th International Conference on Creep and Fracture of Engineering Materials and Structures, May 31 - June 4, 2015, Toulouse, France}, pages = {16 -- 17}, abstract = {Monocrystaline Ni-base superalloys are the material of choice for first row blades in jet engine gas turbines. Using a novel visualization tool for 3D reconstruction and visualization of dislocation line segments from stereo-pairs of scanning transmission electron microscopies, the superdislocation substructures in Ni-base superalloy LEK 94 (crept to ε = 26\%) are characterized. Probable scenarios are discussed, how these dislocation substructures form.}, language = {en} } @misc{BojarovskiHegeLieetal., author = {Bojarovski, Stefan and Hege, Hans-Christian and Lie, Han Cheng and Weber, Marcus}, title = {Topological analysis and visualization of scalar functions characterizing conformational transitions of molecules on multiple time-scales}, series = {Shape Up 2015 - Exercises in Materials Geometry and Topology, 14-18 Sept. 2015, Berlin, Germany}, journal = {Shape Up 2015 - Exercises in Materials Geometry and Topology, 14-18 Sept. 2015, Berlin, Germany}, abstract = {Molecular processes such as protein folding or ligand-receptor-binding can be understood by analyzing the free energy landscape. Those processes are often metastable, i.e. the molecular systems remain in basins around local minima of the free energy landscape, and in rare cases undergo gauche transitions between metastable states by passing saddle-points of this landscape. By discretizing the configuration space, this can be modeled as a discrete Markov process. One way to compute the transition rates between conformations of a molecular system is by utilizing Transition Path Theory and the concept of committor functions. A fundamental problem from the computational point of view is that many time-scales are involved, ranging from 10^(-14) sec for the fastest motion to 10^(-6) sec or more for conformation changes that cause biological effects. The goal of our work is to provide a better understanding of such transitions in configuration space on various time-scales by analyzing characteristic scalar functions topologically and geometrically. We are developing suitable visualization and interaction techniques to support our analysis. For example, we are analyzing a transition rate indicator function by computing and visualizing its Reeb graph together with the sets of molecular states corresponding to maxima of the transition rate indicator function. A particular challenge is the high dimensionality of the domain which does not allow for a straightforward visualization of the function. The computational topology approach to the analysis of the transition rate indicator functions for a molecular system allows to explore different time scales of the system by utilizing coarser or finer topological partitioning of the function. A specific goal is the development of tools for analyzing the hierarchy of these partitionings. This approach tackles the analysis of a complex and sparse dataset from a different angle than the well-known spectral analysis of Markov State Models.}, language = {en} } @inproceedings{KozlikovaKroneLindowetal.2015, author = {Kozlikova, Barbora and Krone, Michael and Lindow, Norbert and Falk, Martin and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian}, title = {Visualization of Biomolecular Structures: State of the Art}, series = {EuroVis 2015 STARS Proceedings}, booktitle = {EuroVis 2015 STARS Proceedings}, doi = {10.2312/eurovisstar.20151112}, pages = {61 -- 81}, year = {2015}, abstract = {Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The report concludes with an outlook on promising and important research topics to enable further success in advancing the knowledge about interaction of molecular structures.}, language = {en} } @article{DercksenHegeOberlaender2014, author = {Dercksen, Vincent J. and Hege, Hans-Christian and Oberlaender, Marcel}, title = {The Filament Editor: An Interactive Software Environment for Visualization, Proof-Editing and Analysis of 3D Neuron Morphology}, series = {NeuroInformatics}, volume = {12}, journal = {NeuroInformatics}, number = {2}, publisher = {Springer US}, doi = {10.1007/s12021-013-9213-2}, pages = {325 -- 339}, year = {2014}, language = {en} } @inproceedings{RitterProhaskaBrandetal., author = {Ritter, Zully and Prohaska, Steffen and Brand, R. and Friedmann, A. and Hege, Hans-Christian and Goebbels, J{\"u}rgen and Felsenberg, Dieter}, title = {Osteocytes number and volume in osteoporotic and in healthy bone biopsies analysed using Synchrotron CT: a pilot study}, series = {Proc. ISB 2011}, booktitle = {Proc. ISB 2011}, language = {en} } @article{KainmuellerLameckerHelleretal.2013, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Heller, Markus O. and Weber, Britta and Hege, Hans-Christian and Zachow, Stefan}, title = {Omnidirectional Displacements for Deformable Surfaces}, series = {Medical Image Analysis}, volume = {17}, journal = {Medical Image Analysis}, number = {4}, publisher = {Elsevier}, doi = {10.1016/j.media.2012.11.006}, pages = {429 -- 441}, year = {2013}, language = {en} } @article{PoethkowHege2011, author = {P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {17}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {10}, doi = {10.1109/TVCG.2010.247}, pages = {1393 -- 1406}, year = {2011}, language = {en} } @article{OberleithnerSieberNayerietal.2011, author = {Oberleithner, Kilian and Sieber, Moritz and Nayeri, Christian and Paschereit, Christian and Petz, Christoph and Hege, Hans-Christian and Noack, Bernd and J. Wygnanski, Israel}, title = {Three-dimensional Coherent Structures of the Swirling Jet Undergoing Vortex breakdown: Stability Analysis and Empirical Mode Construction}, series = {J. Fluid Mech.}, volume = {679}, journal = {J. Fluid Mech.}, doi = {10.1017/jfm.2011.141}, pages = {383 -- 414}, year = {2011}, language = {en} } @misc{GuentherReininghausProhaskaetal.2012, author = {G{\"u}nther, David and Reininghaus, Jan and Prohaska, Steffen and Weinkauf, Tino and Hege, Hans-Christian}, title = {Efficient Computation of a Hierarchy of Discrete 3D Gradient Vector Fields}, series = {Topological Methods in Data Analysis and Visualization II}, journal = {Topological Methods in Data Analysis and Visualization II}, editor = {Peikert, Ronny and Hauser, Helwig and Carr, Hamish}, publisher = {Springer}, doi = {10.1007/978-3-642-23175-9_2}, pages = {15 -- 29}, year = {2012}, language = {en} } @misc{KastenHotzHege, author = {Kasten, Jens and Hotz, Ingrid and Hege, Hans-Christian}, title = {On the Elusive Concept of Lagrangian Coherent Structures}, series = {Topological Methods in Data Analysis and Visualization II}, journal = {Topological Methods in Data Analysis and Visualization II}, editor = {Peikert, Ronald and Hauser, Helwig and Carr, Hamish and Fuchs, Raphael}, publisher = {Springer}, doi = {10.1007/978-3-642-23175-9_14}, pages = {207 -- 220}, language = {en} } @article{AndraeBarthBredtmannetal.2011, author = {Andrae, Dirk and Barth, Ingo and Bredtmann, Timm and Hege, Hans-Christian and Manz, J{\"o}rn and Marquardt, Falko and Paulus, Beate}, title = {Electronic Quantum Fluxes During Pericyclic Reactions Exemplified for the Cope Rearrangement of Semibullvalene}, series = {J. Phys. Chem. B}, volume = {115}, journal = {J. Phys. Chem. B}, number = {18}, doi = {10.1021/jp110365g}, pages = {5476 -- 5483}, year = {2011}, language = {en} } @inproceedings{BindernagelKainmuellerSeimetal.2011, author = {Bindernagel, Matthias and Kainm{\"u}ller, Dagmar and Seim, Heiko and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {An Articulated Statistical Shape Model of the Human Knee}, series = {Bildverarbeitung f{\"u}r die Medizin 2011}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2011}, publisher = {Springer}, doi = {10.1007/978-3-642-19335-4_14}, pages = {59 -- 63}, year = {2011}, language = {en} } @inproceedings{KussProhaskaMeyeretal.2008, author = {Kuß, Anja and Prohaska, Steffen and Meyer, Bj{\"o}rn and Rybak, J{\"u}rgen and Hege, Hans-Christian}, title = {Ontology-Based Visualization of Hierarchical Neuroanatomical Structures}, series = {Proceedings of the Eurographics Workshop on Visual Computing for Biomedicine VCBM 2008}, booktitle = {Proceedings of the Eurographics Workshop on Visual Computing for Biomedicine VCBM 2008}, pages = {177 -- 184}, year = {2008}, language = {en} } @article{ShiWeinkaufTheiseletal.2008, author = {Shi, Kuangyu and Weinkauf, Tino and Theisel, Holger and Hege, Hans-Christian and Seidel, Hans-Peter}, title = {Visualizing Transport Structures of Time-Dependent Flow Fields}, series = {IEEE Computer Graphics and Applications}, journal = {IEEE Computer Graphics and Applications}, doi = {10.1109/MCG.2008.106}, pages = {24 -- 35}, year = {2008}, language = {en} } @inproceedings{vonFunckWeinkaufTheiseletal.2008, author = {von Funck, Wolfram and Weinkauf, Tino and Theisel, Holger and Hege, Hans-Christian}, title = {Smoke Surfaces: An Interactive Flow Visualization Technique Inspired by Real-World Flow Experiments}, series = {IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2008)}, volume = {14}, booktitle = {IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2008)}, number = {6}, doi = {10.1109/TVCG.2008.163}, pages = {1396 -- 1403}, year = {2008}, language = {en} } @inproceedings{PapazovDercksenLameckeretal.2008, author = {Papazov, Chavdar and Dercksen, Vincent J. and Lamecker, Hans and Hege, Hans-Christian}, title = {Visualizing morphogenesis and growth by temporal interpolation of surface-based 3D atlases}, series = {Proceedings of the 2008 IEEE International Symposium on Biomedical Imaging}, booktitle = {Proceedings of the 2008 IEEE International Symposium on Biomedical Imaging}, doi = {10.1109/ISBI.2008.4541123}, pages = {824 -- 827}, year = {2008}, language = {en} } @inproceedings{GoubergritsPoethkePetzetal.2008, author = {Goubergrits, Leonid and P{\"o}thke, Jens and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas and Kertzscher, Ulrich}, title = {3D Bildgebung von zerebralen Aneurysmen}, series = {Bildverarbeitung f{\"u}r die Medizin}, booktitle = {Bildverarbeitung f{\"u}r die Medizin}, doi = {10.1007/978-3-540-78640-5_31}, pages = {153 -- 157}, year = {2008}, language = {en} } @inproceedings{PetzProhaskaGoubergritsetal.2008, author = {Petz, Christoph and Prohaska, Steffen and Goubergrits, Leonid and Kertzscher, Ulrich and Hege, Hans-Christian}, title = {Near-Wall Flow Visualization in Flattened Surface Neighborhoods}, series = {Proc. Simulation and Visualization 2008}, booktitle = {Proc. Simulation and Visualization 2008}, address = {Magdeburg, Germany}, pages = {93 -- 105}, year = {2008}, language = {en} } @inproceedings{KainmuellerLameckerZachowetal.2008, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {Coupling Deformable Models for Multi-object Segmentation}, series = {Proc. Int. Symp. on Computational Models for Biomedical Simulation (ISBMS)}, booktitle = {Proc. Int. Symp. on Computational Models for Biomedical Simulation (ISBMS)}, doi = {10.1007/978-3-540-70521-5_8}, pages = {69 -- 78}, year = {2008}, language = {en} } @inproceedings{KainmuellerLameckerZachowetal.2008, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan and Heller, Markus O. and Hege, Hans-Christian}, title = {Multi-Object Segmentation with Coupled Deformable Models}, series = {Proc. Medical Image Understanding and Analysis}, booktitle = {Proc. Medical Image Understanding and Analysis}, pages = {34 -- 38}, year = {2008}, language = {en} } @inproceedings{DworzakLameckervonBergetal.2008, author = {Dworzak, Jalda and Lamecker, Hans and von Berg, Jens and Klinder, Tobias and Lorenz, Cristian and Kainm{\"u}ller, Dagmar and Seim, Heiko and Hege, Hans-Christian and Zachow, Stefan}, title = {Towards model-based 3-D reconstruction of the human rib cage from radiographs}, series = {Proc. 7. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer-Roboterassistierte Chirurgie (CURAC)}, booktitle = {Proc. 7. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer-Roboterassistierte Chirurgie (CURAC)}, pages = {193 -- 196}, year = {2008}, language = {en} } @inproceedings{SeimKainmuellerHelleretal.2008, author = {Seim, Heiko and Kainm{\"u}ller, Dagmar and Heller, Markus O. and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {Automatic Segmentation of the Pelvic Bones from CT Data Based on a Statistical Shape Model}, series = {Eurographics Workshop on Visual Computing for Biomedicine (VCBM)}, booktitle = {Eurographics Workshop on Visual Computing for Biomedicine (VCBM)}, address = {Delft, Netherlands}, pages = {93 -- 100}, year = {2008}, language = {en} } @article{HegeManzMarquardtetal.2010, author = {Hege, Hans-Christian and Manz, J{\"o}rn and Marquardt, Falko and Paulus, Beate and Schild, Axel}, title = {Electron Flux during Pericyclic Reactions in the Tunneling Limit: Quantum Simulation for Cyclooctatetraene}, series = {Chem. Phys}, volume = {376}, journal = {Chem. Phys}, number = {1-3}, doi = {10.1016/j.chemphys.2010.07.033}, pages = {46 -- 55}, year = {2010}, language = {en} } @misc{BredtmannMarquardtAndraeetal.2010, author = {Bredtmann, Timm and Marquardt, Falko and Andrae, Dirk and Barth, Ingo and Hege, Hans-Christian and Hoki, Kunihito and Kenfack, Anatole and Kono, Hirohiko and Manz, J{\"o}rn and Paulus, Beate}, title = {Electronic and Nuclear Fluxes during Pericyclic Reactions: Quantum Simulations for the Cope Rearrangement of Semibullvalene}, publisher = {International Symposium on Theoretical and Computational Chemistry, 28 Feb - 2 March, 2010, Max-Planck-Institut f{\"u}r Kohlenforschung, M{\"u}lheim an der Ruhr, Germany}, year = {2010}, language = {en} } @misc{BredtmannMarquardtAndraeetal.2010, author = {Bredtmann, Timm and Marquardt, Falko and Andrae, Dirk and Barth, Ingo and Hege, Hans-Christian and Manz, J{\"o}rn and Paulus, Beate}, title = {Electronic and Nuclear Fluxes During Pericyclic Reactions: Quantum Simulations for the Cope Rearrangement of Semibullvalene}, publisher = {CSTC 2010 - 17th Canadian Symposium on Theoretical Chemistry, July 25-30, 2010, Edmonton, Alberta, Canada}, year = {2010}, language = {en} } @article{OberleithnerSieberNayerietal.2010, author = {Oberleithner, Kilian and Sieber, Moritz and Nayeri, Christian and Paschereit, Christian and Petz, Christoph and Hege, Hans-Christian and Noack, Bernd and Wygnanski, Israel}, title = {Self Excited Oscillations in Swirling Jets: Stability Analysis and Empirical Mode Construction}, series = {Bulletin of the American Physical Society}, volume = {55}, journal = {Bulletin of the American Physical Society}, number = {16}, pages = {GE.00008}, year = {2010}, language = {en} } @misc{KastenReininghausOberleithneretal.2010, author = {Kasten, Jens and Reininghaus, Jan and Oberleithner, Kilian and Hotz, Ingrid and Noack, Bernd and Hege, Hans-Christian}, title = {Flow over a Cavity - Evolution of the Vortex Skeleton}, publisher = {Visualization at 28th Annual Gallery of Fluid Motion exhibit, held at the 63th Annual Meeting of the American Physical Society, Division of Fluid Dynamics (Long Beach, CA, USA, November 21-23, 2010).}, year = {2010}, language = {en} } @article{KastenPetzHotzetal.2010, author = {Kasten, Jens and Petz, Christoph and Hotz, Ingrid and Hege, Hans-Christian and Noack, Bernd and Tadmor, Gilead}, title = {Lagrangian Feature Extraction of the Cylinder Wake}, series = {Physics of Fluids}, volume = {22}, journal = {Physics of Fluids}, number = {9}, doi = {10.1063/1.3483220}, pages = {091108}, year = {2010}, language = {en} } @inproceedings{WeberMoellerVerbavatzetal.2011, author = {Weber, Britta and M{\"o}ller, Marit and Verbavatz, Jean-Marc and Baum, Daniel and Hege, Hans-Christian and Prohaska, Steffen}, title = {Fast Tracing of Microtubule Centerlines in Electron Tomograms}, series = {BioVis 2011 Abstracts, 1st IEEE Symposium on Biological Data Visualization}, booktitle = {BioVis 2011 Abstracts, 1st IEEE Symposium on Biological Data Visualization}, year = {2011}, language = {en} }