@misc{WunderlingHege1992, author = {Wunderling, Roland and Hege, Hans-Christian}, title = {AGIL - the Adaptable Graphical Interface Layer, Programmierer-Handbuch}, publisher = {Interner Report, Konrad-Zuse-Zentrum f{\"u}r Informationstechnik Berlin (ZIB), Germany}, pages = {34pp.}, year = {1992}, language = {en} } @article{HegeKnecht1992, author = {Hege, Hans-Christian and Knecht, Renate}, title = {Conference Report: Parallel Computing 91}, volume = {18}, journal = {Parallel Computing}, number = {4}, pages = {473 -- 476}, year = {1992}, language = {en} } @article{HashimotoHege1992, author = {Hashimoto, T. and Hege, Hans-Christian}, title = {Hadron Spectroscopy on a 32^3 * 48 Lattice}, journal = {Nucl. Phys. B Proc. Suppl. 26}, doi = {10.1016/0920-5632(92)90257-S}, pages = {293 -- 295}, year = {1992}, language = {en} } @article{AkemiForcrandFujisakietal.1992, author = {Akemi, K. and Forcrand, Ph. de and Fujisaki, M. and Hashimoto, T. and Hege, Hans-Christian and Hioki, S. and Makino, J. and Miyamura, O. and Nakamura, A. and Okuda, M. and Stamatescu, I. O. and Tago, Yoshio and Takaishi, T.}, title = {SU(3) Renormalization Group Study on Parallel Computer AP 1000}, journal = {Nucl. Phys. B Proc. Suppl. 26}, doi = {10.1016/0920-5632(92)90293-2}, pages = {420 -- 422}, year = {1992}, language = {en} } @article{AkemiForcrandFujisakietal.1992, author = {Akemi, K. and Forcrand, Ph. de and Fujisaki, M. and Hashimoto, T. and Hege, Hans-Christian and Hioki, S. and Makino, J. and Miyamura, O. and Nakamura, A. and Okuda, M. and Stamatescu, I. O. and Tago, Yoshio and Takaishi, T.}, title = {QCD on the Highly Parallel Computer AP 1000}, journal = {Nucl. Phys. B Proc. Suppl. 26}, doi = {10.1016/0920-5632(92)90358-Y}, pages = {644 -- 646}, year = {1992}, language = {en} } @inproceedings{HegeStueben1991, author = {Hege, Hans-Christian and St{\"u}ben, Hinnerk}, title = {Vectorization and Parallelization of Irregular Problems via Graph Coloring}, booktitle = {Proc. of the ACM Int. Conf. on Supercomputing}, address = {Cologne}, doi = {10.1145/109025.109042}, pages = {47 -- 56}, year = {1991}, language = {en} } @article{DercksenHegeOberlaender2014, author = {Dercksen, Vincent J. and Hege, Hans-Christian and Oberlaender, Marcel}, title = {The Filament Editor: An Interactive Software Environment for Visualization, Proof-Editing and Analysis of 3D Neuron Morphology}, volume = {12}, journal = {NeuroInformatics}, number = {2}, publisher = {Springer US}, doi = {10.1007/s12021-013-9213-2}, pages = {325 -- 339}, year = {2014}, language = {en} } @article{LindowBaumLeborgneetal.2019, author = {Lindow, Norbert and Baum, Daniel and Leborgne, Morgan and Hege, Hans-Christian}, title = {Interactive Visualization of RNA and DNA Structures}, volume = {25}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {1}, doi = {10.1109/TVCG.2018.2864507}, pages = {967 -- 976}, year = {2019}, abstract = {The analysis and visualization of nucleic acids (RNA and DNA) is playing an increasingly important role due to their fundamental importance for all forms of life and the growing number of known 3D structures of such molecules. The great complexity of these structures, in particular, those of RNA, demands interactive visualization to get deeper insights into the relationship between the 2D secondary structure motifs and their 3D tertiary structures. Over the last decades, a lot of research in molecular visualization has focused on the visual exploration of protein structures while nucleic acids have only been marginally addressed. In contrast to proteins, which are composed of amino acids, the ingredients of nucleic acids are nucleotides. They form structuring patterns that differ from those of proteins and, hence, also require different visualization and exploration techniques. In order to support interactive exploration of nucleic acids, the computation of secondary structure motifs as well as their visualization in 2D and 3D must be fast. Therefore, in this paper, we focus on the performance of both the computation and visualization of nucleic acid structure. We present a ray casting-based visualization of RNA and DNA secondary and tertiary structures, which enables for the first time real-time visualization of even large molecular dynamics trajectories. Furthermore, we provide a detailed description of all important aspects to visualize nucleic acid secondary and tertiary structures. With this, we close an important gap in molecular visualization.}, language = {en} } @article{AgudoJacomeHegePaetschetal.2018, author = {Agudo J{\´a}come, Leonardo and Hege, Hans-Christian and Paetsch, Olaf and P{\"o}thkow, Kai}, title = {Three-dimensional reconstruction and quantification of dislocation substructures from transmission electron microscopy stereo pairs}, volume = {195}, journal = {Ultramicroscopy}, doi = {10.1016/j.ultramic.2018.08.015}, pages = {157 -- 170}, year = {2018}, abstract = {A great amount of material properties is strongly influenced by dislocations, the carriers of plastic deformation. It is therefore paramount to have appropriate tools to quantify dislocation substructures with regard to their features, e.g., dislocation density, Burgers vectors or line direction. While the transmission electron microscope (TEM) has been the most widely-used equipment implemented to investigate dislocations, it usually is limited to the two-dimensional (2D) observation of three-dimensional (3D) structures. We reconstruct, visualize and quantify 3D dislocation substructure models from only two TEM images (stereo pairs) and assess the results. The reconstruction is based on the manual interactive tracing of filiform objects on both images of the stereo pair. The reconstruction and quantification method are demonstrated on dark field (DF) scanning (S)TEM micrographs of dislocation substructures imaged under diffraction contrast conditions. For this purpose, thick regions (>300 nm) of TEM foils are analyzed, which are extracted from a Ni-base superalloy single crystal after high temperature creep deformation. It is shown how the method allows 3D quantification from stereo pairs in a wide range of tilt conditions, achieving line length and orientation uncertainties of 3\% and 7°, respectively. Parameters that affect the quality of such reconstructions are discussed.}, language = {en} } @inproceedings{CoconuUllmerPaaretal.2018, author = {Coconu, Liviu and Ullmer, Brygg and Paar, Philip and Liu, Jing and Konkel, Miriam and Hege, Hans-Christian}, title = {A smartphone-based tangible interaction approach for landscape visualization.}, booktitle = {PerDis '18 Proceedings of the 7th ACM International Symposium on Pervasive Displays, Munich, Germany, June 6-8, 2018}, publisher = {ACM}, address = {New York, NY, USA}, doi = {10.1145/3205873.3210707}, pages = {no. 23}, year = {2018}, abstract = {The use of tangible interfaces for navigation of landscape scenery - for example, lost places re-created in 3D - has been pursued and articulated as a promising, impactful application of interactive visualization. In this demonstration, we present a modern, low-cost implementation of a previously-realized multimodal gallery installation. Our demonstration centers upon the versatile usage of a smartphone for sensing, navigating, and (optionally) displaying element on a physical surface in tandem with a larger, more immersive display.}, language = {en} } @inproceedings{UllmerPaarCoconuetal.2018, author = {Ullmer, Brygg and Paar, Philip and Coconu, Liviu and Liu, Jing and Konkel, Miriam and Hege, Hans-Christian}, title = {An 1834 mediterranean garden in Berlin - engaged from 2004, 2018, 2032, and 2202}, booktitle = {PerDis '18 - 7th ACM International Symposium on Pervasive Displays, Munich, Germany, June 6-8, 2018}, publisher = {ACM}, address = {New York, NY, USA}, doi = {10.1145/3205873.3205894}, pages = {no. 12}, year = {2018}, abstract = {In 2004, a team of researchers realized a semi-immersive interactive gallery installation, visualizing an 1834 Mediterranean garden, introduced as "italienisches Kunstst{\"u}ck" (Italian legerdemain) by Peter Joseph Lenn{\´e}. The park was originally realized on the grounds of Schloss Sanssouci in Potsdam, Germany. The installation centered on highly detailed renderings of hundreds of plants projected upon a panoramic display. Interactivity was expressed with a tangible interface which (while presently dated) we believe remains without near-precedent then or since. We present the installation (experienced by roughly 20,000 visitors), focusing on the interaction aspects. We introduce new book and table/door-format mockups. Drawing upon a heuristic of the scientist-philosopher Freeman Dyson, we consider grounded future prospect variations in the contexts of 2018, 2032, and 2202. We see this exercise as prospectively generalizing to a variety of similar and widely diverse application domains.}, language = {en} } @article{BaumLindowHegeetal.2017, author = {Baum, Daniel and Lindow, Norbert and Hege, Hans-Christian and Lepper, Verena and Siopi, Tzulia and Kutz, Frank and Mahlow, Kristin and Mahnke, Heinz-Eberhard}, title = {Revealing hidden text in rolled and folded papyri}, volume = {123}, journal = {Applied Physics A}, number = {3}, doi = {10.1007/s00339-017-0808-6}, pages = {171}, year = {2017}, abstract = {Ancient Egyptian papyri are often folded, rolled up or kept as small packages, sometimes even sealed. Physically unrolling or unfolding these packages might severely damage them. We demonstrate a way to get access to the hidden script without physical unfolding by employing computed tomography and mathematical algorithms for virtual unrolling and unfolding. Our algorithmic approaches are combined with manual interaction. This provides the necessary flexibility to enable the unfolding of even complicated and partly damaged papyrus packages. In addition, it allows us to cope with challenges posed by the structure of ancient papyrus, which is rather irregular, compared to other writing substrates like metallic foils or parchment. Unfolding of packages is done in two stages. In the first stage, we virtually invert the physical folding process step by step until the partially unfolded package is topologically equivalent to a scroll or a papyrus sheet folded only along one fold line. To minimize distortions at this stage, we apply the method of moving least squares. In the second stage, the papyrus is simply flattened, which requires the definition of a medial surface. We have applied our software framework to several papyri. In this work, we present the results of applying our approaches to mockup papyri that were either rolled or folded along perpendicular fold lines. In the case of the folded papyrus, our approach represents the first attempt to address the unfolding of such complicated folds.}, language = {en} } @inproceedings{RitterProhaskaBrandetal.2011, author = {Ritter, Zully and Prohaska, Steffen and Brand, R. and Friedmann, A. and Hege, Hans-Christian and Goebbels, J{\"u}rgen and Felsenberg, Dieter}, title = {Osteocytes number and volume in osteoporotic and in healthy bone biopsies analysed using Synchrotron CT: a pilot study}, booktitle = {Proc. ISB 2011}, year = {2011}, language = {en} } @article{KainmuellerLameckerHelleretal.2013, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Heller, Markus O. and Weber, Britta and Hege, Hans-Christian and Zachow, Stefan}, title = {Omnidirectional Displacements for Deformable Surfaces}, volume = {17}, journal = {Medical Image Analysis}, number = {4}, publisher = {Elsevier}, doi = {10.1016/j.media.2012.11.006}, pages = {429 -- 441}, year = {2013}, language = {en} } @inproceedings{KastenZoufahlHegeetal.2012, author = {Kasten, Jens and Zoufahl, Andre and Hege, Hans-Christian and Hotz, Ingrid}, title = {Analysis of Vortex Merge Graphs}, booktitle = {VMV 2012: Vision, Modeling and Visualization}, publisher = {Eurographics Association}, doi = {10.2312/PE/VMV/VMV12/111-118}, pages = {111 -- 118}, year = {2012}, language = {en} } @inproceedings{KastenHotzNoacketal.2012, author = {Kasten, Jens and Hotz, Ingrid and Noack, Bernd and Hege, Hans-Christian}, title = {Vortex Merge Graphs in Two-dimensional Unsteady Flow Fields}, booktitle = {EuroVis - Short Papers}, publisher = {Eurographics Association}, address = {Vienna, Austria}, doi = {10.2312/PE/EuroVisShort/EuroVisShort2012/001-005}, pages = {1 -- 5}, year = {2012}, language = {en} } @article{KroneKozlikovaLindowetal.2016, author = {Krone, Michael and Kozl{\´i}kov{\´a}, Barbora and Lindow, Norbert and Baaden, Marc and Baum, Daniel and Parulek, Julius and Hege, Hans-Christian and Viola, Ivan}, title = {Visual Analysis of Biomolecular Cavities: State of the Art}, volume = {35}, journal = {Computer Graphics Forum}, number = {3}, issn = {1467-8659}, doi = {10.1111/cgf.12928}, pages = {527 -- 551}, year = {2016}, abstract = {In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field.}, language = {en} } @article{KramerNoackBaumetal.2015, author = {Kramer, Tobias and Noack, Matthias and Baum, Daniel and Hege, Hans-Christian and Heller, Eric J.}, title = {Homogeneous dust emission and jet structure near active cometary nuclei: the case of 67P/Churyumov-Gerasimenko}, arxiv = {http://arxiv.org/abs/1505.08041}, year = {2015}, abstract = {We compute trajectories of dust grains starting from a homogeneous surface activity-profile on a irregularly shaped cometary nucleus. Despite the initially homogeneous dust distribution a collimation in jet-like structures becomes visible. The fine structure is caused by concave topographical features with similar bundles of normal vectors. The model incorporates accurately determined gravitational forces, rotation of the nucleus, and gas-dust interaction. Jet-like dust structures are obtained for a wide range of gas-dust interactions. For the comet 67P/Churyumov-Gerasimenko, we derive the global dust distribution around the nucleus and find several areas of agreement between the homogeneous dust emission model and the Rosetta observation of dust jets, including velocity-dependent bending of trajectories.}, language = {en} } @inproceedings{AgudoJacomeHegePaetschetal.2016, author = {Agudo J{\´a}come, Leonardo and Hege, Hans-Christian and Paetsch, Olaf and P{\"o}thkow, Kai}, title = {3D Reconstruction, Visualization and Quantification of Dislocations from Transmission Electron Microscopy Stereo-Pairs}, booktitle = {Microscopy and Microanalysis 2016, July 24-28 Columbus, Ohio}, year = {2016}, language = {en} } @inproceedings{LindowBaumHege2018, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Atomic Accessibility Radii for Molecular Dynamics Analysis}, booktitle = {Workshop on Molecular Graphics and Visual Analysis of Molecular Data}, publisher = {The Eurographics Association}, isbn = {978-3-03868-061-1}, doi = {10.2312/molva.20181101}, year = {2018}, abstract = {In molecular structure analysis and visualization, the molecule's atoms are often modeled as hard spheres parametrized by their positions and radii. While the atom positions result from experiments or molecular simulations, for the radii typically values are taken from literature. Most often, van der Waals (vdW) radii are used, for which diverse values exist. As a consequence, different visualization and analysis tools use different atomic radii, and the analyses are less objective than often believed. Furthermore, for the geometric accessibility analysis of molecular structures, vdW radii are not well suited. The reason is that during the molecular dynamics simulation, depending on the force field and the kinetic energy in the system, non-bonded atoms can come so close to each other that their vdW spheres intersect. In this paper, we introduce a new kind of atomic radius, called atomic accessibility radius', that better characterizes the accessibility of an atom in a given molecular trajectory. The new radii reflect the movement possibilities of atoms in the simulated physical system. They are computed by solving a linear program that maximizes the radii of the atoms under the constraint that non-bonded spheres do not intersect in the considered molecular trajectory. Using this data-driven approach, the actual accessibility of atoms can be visualized more precisely.}, language = {en} } @article{NavaYazdaniHegeSullivanetal.2020, author = {Nava-Yazdani, Esfandiar and Hege, Hans-Christian and Sullivan, T. J. and von Tycowicz, Christoph}, title = {Geodesic Analysis in Kendall's Shape Space with Epidemiological Applications}, volume = {62}, journal = {Journal of Mathematical Imaging and Vision}, number = {4}, arxiv = {http://arxiv.org/abs/1906.11950}, doi = {10.1007/s10851-020-00945-w}, pages = {549 -- 559}, year = {2020}, abstract = {We analytically determine Jacobi fields and parallel transports and compute geodesic regression in Kendall's shape space. Using the derived expressions, we can fully leverage the geometry via Riemannian optimization and thereby reduce the computational expense by several orders of magnitude over common, nonlinear constrained approaches. The methodology is demonstrated by performing a longitudinal statistical analysis of epidemiological shape data. As an example application we have chosen 3D shapes of knee bones, reconstructed from image data of the Osteoarthritis Initiative (OAI). Comparing subject groups with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data alone.}, language = {en} } @inproceedings{NavaYazdaniHegevonTycowicz2019, author = {Nava-Yazdani, Esfandiar and Hege, Hans-Christian and von Tycowicz, Christoph}, title = {A Geodesic Mixed Effects Model in Kendall's Shape Space}, volume = {11846}, booktitle = {Proc. 7th MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA)}, doi = {10.1007/978-3-030-33226-6_22}, pages = {209 -- 218}, year = {2019}, abstract = {In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and apply the approach for the estimation of group trends and statistical testing of 3D shapes derived from an open access longitudinal imaging study on osteoarthritis.}, language = {en} } @inproceedings{HanikHegeHennemuthetal.2020, author = {Hanik, Martin and Hege, Hans-Christian and Hennemuth, Anja and von Tycowicz, Christoph}, title = {Nonlinear Regression on Manifolds for Shape Analysis using Intrinsic B{\´e}zier Splines}, booktitle = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI)}, publisher = {Springer International Publishing}, address = {Cham}, arxiv = {http://arxiv.org/abs/2007.05275}, doi = {10.1007/978-3-030-59719-1_60}, pages = {617 -- 626}, year = {2020}, abstract = {Intrinsic and parametric regression models are of high interest for the statistical analysis of manifold-valued data such as images and shapes. The standard linear ansatz has been generalized to geodesic regression on manifolds making it possible to analyze dependencies of random variables that spread along generalized straight lines. Nevertheless, in some scenarios, the evolution of the data cannot be modeled adequately by a geodesic. We present a framework for nonlinear regression on manifolds by considering Riemannian splines, whose segments are B{\´e}zier curves, as trajectories. Unlike variational formulations that require time-discretization, we take a constructive approach that provides efficient and exact evaluation by virtue of the generalized de Casteljau algorithm. We validate our method in experiments on the reconstruction of periodic motion of the mitral valve as well as the analysis of femoral shape changes during the course of osteoarthritis, endorsing B{\´e}zier spline regression as an effective and flexible tool for manifold-valued regression.}, language = {en} } @inproceedings{HanikHegevonTycowicz2020, author = {Hanik, Martin and Hege, Hans-Christian and von Tycowicz, Christoph}, title = {Bi-invariant Two-Sample Tests in Lie Groups for Shape Analysis}, booktitle = {Shape in Medical Imaging}, publisher = {Springer International Publishing}, address = {Cham}, arxiv = {http://arxiv.org/abs/2008.12195}, doi = {10.1007/978-3-030-61056-2_4}, pages = {44 -- 54}, year = {2020}, abstract = {We propose generalizations of the T²-statistics of Hotelling and the Bhattacharayya distance for data taking values in Lie groups. A key feature of the derived measures is that they are compatible with the group structure even for manifolds that do not admit any bi-invariant metric. This property, e.g., assures analysis that does not depend on the reference shape, thus, preventing bias due to arbitrary choices thereof. Furthermore, the generalizations agree with the common definitions for the special case of flat vector spaces guaranteeing consistency. Employing a permutation test setup, we further obtain nonparametric, two-sample testing procedures that themselves are bi-invariant and consistent. We validate our method in group tests revealing significant differences in hippocampal shape between individuals with mild cognitive impairment and normal controls.}, language = {en} } @inproceedings{PapazovHege2017, author = {Papazov, Chavdar and Hege, Hans-Christian}, title = {Blue-noise Optimized Point Sets Based on Procrustes Analysis}, booktitle = {SIGGRAPH Asia 2017 Technical Briefs}, doi = {10.1145/3145749.3149442}, pages = {20:1 -- 20:4}, year = {2017}, language = {en} } @article{OeltzeJaffraMeuschkeNeugebaueretal.2019, author = {Oeltze-Jaffra, Steffen and Meuschke, Monique and Neugebauer, Mathias and Saalfeld, Sylvia and Lawonn, Kai and Janiga, Gabor and Hege, Hans-Christian and Zachow, Stefan and Preim, Bernhard}, title = {Generation and Visual Exploration of Medical Flow Data: Survey, Research Trends, and Future Challenges}, volume = {38}, journal = {Computer Graphics Forum}, number = {1}, publisher = {Wiley}, doi = {10.1111/cgf.13394}, pages = {87 -- 125}, year = {2019}, abstract = {Simulations and measurements of blood and air flow inside the human circulatory and respiratory system play an increasingly important role in personalized medicine for prevention, diagnosis, and treatment of diseases. This survey focuses on three main application areas. (1) Computational Fluid Dynamics (CFD) simulations of blood flow in cerebral aneurysms assist in predicting the outcome of this pathologic process and of therapeutic interventions. (2) CFD simulations of nasal airflow allow for investigating the effects of obstructions and deformities and provide therapy decision support. (3) 4D Phase-Contrast (4D PC) Magnetic Resonance Imaging (MRI) of aortic hemodynamics supports the diagnosis of various vascular and valve pathologies as well as their treatment. An investigation of the complex and often dynamic simulation and measurement data requires the coupling of sophisticated visualization, interaction, and data analysis techniques. In this paper, we survey the large body of work that has been conducted within this realm. We extend previous surveys by incorporating nasal airflow, addressing the joint investigation of blood flow and vessel wall properties, and providing a more fine-granular taxonomy of the existing techniques. From the survey, we extract major research trends and identify open problems and future challenges. The survey is intended for researchers interested in medical flow but also more general, in the combined visualization of physiology and anatomy, the extraction of features from flow field data and feature-based visualization, the visual comparison of different simulation results, and the interactive visual analysis of the flow field and derived characteristics.}, language = {en} } @article{KramerNoackBaumetal.2018, author = {Kramer, Tobias and Noack, Matthias and Baum, Daniel and Hege, Hans-Christian and Heller, Eric J.}, title = {Dust and gas emission from cometary nuclei: the case of comet 67P/Churyumov-Gerasimenko}, volume = {3}, journal = {Advances in Physics: X}, number = {1}, doi = {10.1080/23746149.2017.1404436}, pages = {1404436}, year = {2018}, abstract = {Comets display with decreasing solar distance an increased emission of gas and dust particles, leading to the formation of the coma and tail. Spacecraft missions provide insight in the temporal and spatial variations of the dust and gas sources located on the cometary nucleus. For the case of comet 67P/Churyumov-Gerasimenko (67P/C-G), the long-term obser- vations from the Rosetta mission point to a homogeneous dust emission across the entire illuminated surface. Despite the homogeneous initial dis- tribution, a collimation in jet-like structures becomes visible. We propose that this observation is linked directly to the complex shape of the nucleus and projects concave topographical features into the dust coma. To test this hypothesis, we put forward a gas-dust description of 67P/C-G, where gravitational and gas forces are accurately determined from the surface mesh and the rotation of the nucleus is fully incorporated. The emerging jet-like structures persist for a wide range of gas-dust interactions and show a dust velocity dependent bending.}, language = {en} } @inproceedings{SakuraiHegeKuhnetal.2017, author = {Sakurai, Daisuke and Hege, Hans-Christian and Kuhn, Alexander and Rust, Henning and Kern, Bastian and Breitkopf, Tom-Lukas}, title = {An Application-Oriented Framework for Feature Tracking in Atmospheric Sciences}, booktitle = {Proceedings of 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV)}, doi = {10.1109/LDAV.2017.8231857}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66685}, pages = {96 -- 97}, year = {2017}, abstract = {In atmospheric sciences, sizes of data sets grow continuously due to increasing resolutions. A central task is the comparison of spatiotemporal fields, to assess different simulations and to compare simulations with observations. A significant information reduction is possible by focusing on geometric-topological features of the fields or on derived meteorological objects. Due to the huge size of the data sets, spatial features have to be extracted in time slices and traced over time. Fields with chaotic component, i.e. without 1:1 spatiotemporal correspondences, can be compared by looking upon statistics of feature properties. Feature extraction, however, requires a clear mathematical definition of the features - which many meteorological objects still lack. Traditionally, object extractions are often heuristic, defined only by implemented algorithms, and thus are not comparable. This work surveys our framework designed for efficient development of feature tracking methods and for testing new feature definitions. The framework supports well-established visualization practices and is being used by atmospheric researchers to diagnose and compare data.}, language = {en} } @article{WilliePapPerkaetal.2015, author = {Willie, Bettina M. and Pap, Thomas and Perka, Carsten and Schmidt, Carsten Oliver and Eckstein, Felix and Arampatzis, Adamantios and Hege, Hans-Christian and Madry, Henning and Vortkamp, Andrea and Duda, Georg}, title = {OVERLOAD of joints and its role in osteoarthritis - Towards understanding and preventing progression of primary osteoarthritis}, volume = {76}, journal = {Zeitschrift f{\"u}r Rheumatologie}, number = {Suppl. 1}, doi = {10.1007/s00393-014-1561-2}, pages = {1 -- 4}, year = {2015}, abstract = {Intact joints are necessary for skeletal function and mobility in daily life. A healthy musculoskeletal system is the basis for a functional cardiovascular system as well as an intact immune system. Locomotion, physiotherapy, and various forms of patient activity are essential clinical therapies used in the treatment of neurodegeneration, stroke, diabetes, and cancer. Mobility is substantially impaired with degeneration of joints and, in advanced stages, nighttime pain and sleep disturbance are particularly cumbersome. Osteoarthritis (OA) is also known as degenerative joint disease. OA involves structural and compositional changes in the articular cartilage, as well as in the calcified cartilage, subchondral cortical bone, subchondral cancellous bone, meniscus, joint capsular tissue, and synovium; which eventually lead to degeneration of these tissues comprising synovial joints.}, language = {en} } @article{GuentherKuhnHegeetal.2017, author = {G{\"u}nther, Tobias and Kuhn, Alexander and Hege, Hans-Christian and Gross, Markus and Theisel, Holger}, title = {Progressive Monte Carlo rendering of atmospheric flow features across scales}, volume = {2}, journal = {Physical Review Fluids}, doi = {10.1103/PhysRevFluids.2.090502}, pages = {09050-1 -- 09050-3}, year = {2017}, abstract = {To improve existing weather prediction and reanalysis capabilities, high-resolution and multi-modal climate data becomes an increasingly important topic. The advent of increasingly dense numerical simulation of atmospheric phenomena, provides new means to better understand dynamic processes and to visualize structural flow patterns that remain hidden otherwise. In the presented illustrations we demonstrate an advanced technique to visualize multiple scales of dense flow fields and Lagrangian patterns therein, simulated by state-of-the-art simulation models for each scale. They provide a deeper insight into the structural differences and patterns that occur on each scale and highlight the complexity of flow phenomena in our atmosphere. This paper is associated with a poster winner of a 2016 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2016.GFM.P0030}, language = {en} } @article{MahnkeArltBaumetal.2020, author = {Mahnke, Heinz-Eberhard and Arlt, Tobias and Baum, Daniel and Hege, Hans-Christian and Herter, Felix and Lindow, Norbert and Manke, Ingo and Siopi, Tzulia and Menei, Eve and Etienne, Marc and Lepper, Verena}, title = {Virtual unfolding of folded papyri}, volume = {41}, journal = {Journal of Cultural Heritage}, publisher = {Elsevier}, doi = {10.1016/j.culher.2019.07.007}, pages = {264 -- 269}, year = {2020}, abstract = {The historical importance of ancient manuscripts is unique since they provide information about the heritage of ancient cultures. Often texts are hidden in rolled or folded documents. Due to recent impro- vements in sensitivity and resolution, spectacular disclosures of rolled hidden texts were possible by X-ray tomography. However, revealing text on folded manuscripts is even more challenging. Manual unfolding is often too risky in view of the fragile condition of fragments, as it can lead to the total loss of the document. X-ray tomography allows for virtual unfolding and enables non-destructive access to hid- den texts. We have recently demonstrated the procedure and tested unfolding algorithms on a mockup sample. Here, we present results on unfolding ancient papyrus packages from the papyrus collection of the Mus{\´e}e du Louvre, among them objects folded along approximately orthogonal folding lines. In one of the packages, the first identification of a word was achieved, the Coptic word for "Lord".}, language = {en} } @inproceedings{FroehlerdaCunhaMeloWeissenboecketal.2019, author = {Fr{\"o}hler, Bernhard and da Cunha Melo, Lucas and Weissenb{\"o}ck, Johannes and Kastner, Johann and M{\"o}ller, Torsten and Hege, Hans-Christian and Gr{\"o}ller, Eduard M. and Sanctorum, Jonathan and De Beenhouwer, Jan and Sijbers, Jan and Heinzl, Christoph}, title = {Tools for the analysis of datasets from X-ray computed tomography based on Talbot-Lau grating interferometry}, booktitle = {Proceedings of iCT 2019, (9th Conference on Industrial Computed Tomography, Padova, Italy - iCT 2019, February 13-15, 2019)}, number = {paper 52}, pages = {8}, year = {2019}, abstract = {This work introduces methods for analyzing the three imaging modalities delivered by Talbot-Lau grating interferometry X-ray computed tomography (TLGI-XCT). The first problem we address is providing a quick way to show a fusion of all three modal- ities. For this purpose the tri-modal transfer function widget is introduced. The widget controls a mixing function that uses the output of the transfer functions of all three modalities, allowing the user to create one customized fused image. A second problem prevalent in processing TLGI-XCT data is a lack of tools for analyzing the segmentation process of such multimodal data. We address this by providing methods for computing three types of uncertainty: From probabilistic segmentation algorithms, from the voxel neighborhoods as well as from a collection of results. We furthermore introduce a linked views interface to explore this data. The techniques are evaluated on a TLGI-XCT scan of a carbon-fiber reinforced dataset with impact damage. We show that the transfer function widget accelerates and facilitates the exploration of this dataset, while the uncertainty analysis methods give insights into how to tweak and improve segmentation algorithms for more suitable results.}, language = {en} } @article{GoubergritsHellmeierBrueningetal.2019, author = {Goubergrits, Leonid and Hellmeier, Florian and Bruening, Jan Joris and Spuler, Andreas and Hege, Hans-Christian and Voss, Samuel and Janiga, G{\´a}bor and Saalfeld, Sylvia and Beuing, Oliver and Berg, Philipp}, title = {Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Uncertainty Quantification of Geometric Rupture Risk Parameters}, volume = {18}, journal = {BioMedical Engineering OnLine}, number = {35}, doi = {10.1186/s12938-019-0657-y}, year = {2019}, abstract = {Background Geometric parameters have been proposed for prediction of cerebral aneurysm rupture risk. Predicting the rupture risk for incidentally detected unruptured aneurysms could help clinicians in their treatment decision. However, assessment of geometric parameters depends on several factors, including the spatial resolution of the imaging modality used and the chosen reconstruction procedure. The aim of this study was to investigate the uncertainty of a variety of previously proposed geometric parameters for rupture risk assessment, caused by variability of reconstruction procedures. Materials 26 research groups provided segmentations and surface reconstructions of five cerebral aneurysms as part of the Multiple Aneurysms AnaTomy CHallenge (MATCH) 2018. 40 dimensional and non-dimensional geometric parameters, describing aneurysm size, neck size, and irregularity of aneurysm shape, were computed. The medians as well as the absolute and relative uncertainties of the parameters were calculated. Additionally, linear regression analysis was performed on the absolute uncertainties and the median parameter values. Results A large variability of relative uncertainties in the range between 3.9 and 179.8\% was found. Linear regression analysis indicates that some parameters capture similar geometric aspects. The lowest uncertainties < 6\% were found for the non-dimensional parameters isoperimetric ratio, convexity ratio, and ellipticity index. Uncertainty of 2D and 3D size parameters was significantly higher than uncertainty of 1D parameters. The most extreme uncertainties > 80\% were found for some curvature parameters. Conclusions Uncertainty analysis is essential on the road to clinical translation and use of rupture risk prediction models. Uncertainty quantification of geometric rupture risk parameters provided by this study may help support development of future rupture risk prediction models.}, language = {en} } @article{FroehlerElberfeldMoelleretal.2019, author = {Fr{\"o}hler, Bernhard and Elberfeld, Tim and M{\"o}ller, Torsten and Hege, Hans-Christian and Weissenb{\"o}ck, Johannes and De Beenhouwer, Jan and Sijbers, Jan and Kastner, Johann and Heinzl, Christoph}, title = {A Visual Tool for the Analysis of Algorithms for Tomographic Fiber Reconstruction in Materials Science}, volume = {38}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/cgf.13688}, pages = {273 -- 283}, year = {2019}, abstract = {We present visual analysis methods for the evaluation of tomographic fiber reconstruction algorithms by means of analysis, visual debugging and comparison of reconstructed fibers in materials science. The methods are integrated in a tool (FIAKER) that supports the entire workflow. It enables the analysis of various fiber reconstruction algorithms, of differently parameterized fiber reconstruction algorithms and of individual steps in iterative fiber reconstruction algorithms. Insight into the performance of fiber reconstruction algorithms is obtained by a list-based ranking interface. A 3D view offers interactive visualization techniques to gain deeper insight, e.g., into the aggregated quality of the examined fiber reconstruction algorithms and parameterizations. The tool was designed in close collaboration with researchers who work with fiber-reinforced polymers on a daily basis and develop algorithms for tomographic reconstruction and characterization of such materials. We evaluate the tool using synthetic datasets as well as tomograms of real materials. Five case studies certify the usefulness of the tool, showing that it significantly accelerates the analysis and provides valuable insights that make it possible to improve the fiber reconstruction algorithms. The main contribution of the paper is the well-considered combination of methods and their seamless integration into a visual tool that supports the entire workflow. Further findings result from the analysis of (dis-)similarity measures for fibers as well as from the discussion of design decisions. It is also shown that the generality of the analytical methods allows a wider range of applications, such as the application in pore space analysis.}, language = {en} } @article{UdvaryHarthMackeetal.2020, author = {Udvary, Daniel and Harth, Philipp and Macke, Jakob H. and Hege, Hans-Christian and de Kock, Christiaan P. J. and Sakmann, Bert and Oberlaender, Marcel}, title = {A Theory for the Emergence of Neocortical Network Architecture}, journal = {BioRxiv}, doi = {https://doi.org/10.1101/2020.11.13.381087}, year = {2020}, language = {en} } @article{PoethkowPetzHege2013, author = {P{\"o}thkow, Kai and Petz, Christoph and Hege, Hans-Christian}, title = {Approximate Level-Crossing Probabilities for Interactive Visualization of Uncertain Isocontours}, volume = {3}, journal = {International Journal for Uncertainty Quantification}, number = {2}, doi = {10.1615/Int.J.UncertaintyQuantification.2012003958}, pages = {101 -- 117}, year = {2013}, language = {en} } @misc{HombergBaumWiebeletal.2014, author = {Homberg, Ulrike and Baum, Daniel and Wiebel, Alexander and Prohaska, Steffen and Hege, Hans-Christian}, title = {Definition, Extraction, and Validation of Pore Structures in Porous Materials}, journal = {Topological Methods in Data Analysis and Visualization III}, editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald}, publisher = {Springer}, doi = {10.1007/978-3-319-04099-8_15}, pages = {235 -- 248}, year = {2014}, language = {en} } @inproceedings{KlindtProhaskaBaumetal.2012, author = {Klindt, Marco and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian}, title = {Conveying Archaeological Contexts to Museum Visitors: Case Study Pergamon Exhibition}, booktitle = {VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers}, editor = {Arnold, David and Kaminski, Jaime and Niccolucci, Franco and Stork, Andre}, publisher = {Eurographics Association}, address = {Brighton, UK}, doi = {10.2312/PE/VAST/VAST12S/025-028}, pages = {25 -- 28}, year = {2012}, language = {en} } @inproceedings{KlindtBaumProhaskaetal.2012, author = {Klindt, Marco and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {iCon.text - a customizable iPad app for kiosk applications in museum exhibitions}, booktitle = {EVA 2012 Berlin}, publisher = {Gesellschaft zur F{\"o}rderung angewandter Informatik e.V.}, address = {Volmerstraße 3, 12489 Berlin}, pages = {150 -- 155}, year = {2012}, language = {en} } @inproceedings{WiebelPreisVosetal.2013, author = {Wiebel, Alexander and Preis, Philipp and Vos, Frans and Hege, Hans-Christian}, title = {3D Strokes on Visible Structures in Direct Volume Rendering}, booktitle = {EuroVis - Short Papers}, editor = {Hlawitschka, Mario and Weinkauf, Tino}, publisher = {Eurographics Association}, doi = {10.2312/PE.EuroVisShort.EuroVisShort2013.091-095}, pages = {91 -- 95}, year = {2013}, language = {en} } @inproceedings{KuhnLindowGuentheretal.2013, author = {Kuhn, Alexander and Lindow, Norbert and G{\"u}nther, Tobias and Wiebel, Alexander and Theisel, Holger and Hege, Hans-Christian}, title = {Trajectory Density Projection for Vector Field Visualization}, booktitle = {EuroVis 2013, short papers. M. Hlawitschka, Tino Weinkauf (eds.)}, doi = {10.2312/PE.EuroVisShort.EuroVisShort2013.031-035}, pages = {31 -- 35}, year = {2013}, language = {en} } @article{PoethkowHege2013, author = {P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Nonparametric Models for Uncertainty Visualization}, volume = {32}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/cgf.12100 target}, pages = {131 -- 140}, year = {2013}, language = {en} } @article{LindowBaumBondaretal.2013, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Exploring cavity dynamics in biomolecular systems}, volume = {14}, journal = {BMC Bioinformatics}, edition = {(Suppl 19):S5}, doi = {10.1186/1471-2105-14-S19-S5}, year = {2013}, language = {en} } @article{EhlkeRammLameckeretal.2013, author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Hege, Hans-Christian and Zachow, Stefan}, title = {Fast Generation of Virtual X-ray Images for Reconstruction of 3D Anatomy}, volume = {19}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2013.159}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-35928}, pages = {2673 -- 2682}, year = {2013}, language = {en} } @article{LindowBaumHege2011, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Voronoi-Based Extraction and Visualization of Molecular Paths}, volume = {17}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2011.259}, pages = {2025 -- 2034}, year = {2011}, language = {en} } @article{RigortGuentherHegerletal.2012, author = {Rigort, Alexander and G{\"u}nther, David and Hegerl, Reiner and Baum, Daniel and Weber, Britta and Prohaska, Steffen and Medalia, Ohad and Baumeister, Wolfgang and Hege, Hans-Christian}, title = {Automated segmentation of electron tomograms for a quantitative description of actin filament networks}, volume = {177}, journal = {Journal of Structural Biology}, doi = {10.1016/j.jsb.2011.08.012}, pages = {135 -- 144}, year = {2012}, language = {en} } @article{PetzOberleithnerSieberetal.2011, author = {Petz, Christoph and Oberleithner, Kilian and Sieber, Moritz and Nayeri, Christian and Paschereit, Oliver and Wygnanski, Israel and Noack, Bernd and Hege, Hans-Christian}, title = {Global Modes in a Swirling Jet Undergoing Vortex Breakdown}, volume = {23}, journal = {Physics of Fluids}, publisher = {Awarded Visualization; First Prize at 28th Annual Gallery of Fluid Motion exhibit, held at the 63th Annual Meeting of the American Physical Society, Division of Fluid Dynamics (Long Beach, CA, USA, November 21-23, 2010).}, doi = {10.1063/1.3640007}, pages = {091102}, year = {2011}, language = {en} } @misc{DercksenOberlaenderSakmannetal.2011, author = {Dercksen, Vincent J. and Oberlaender, Marcel and Sakmann, Bert and Hege, Hans-Christian}, title = {Light Microscopy-Based Reconstruction and Interactive Structural Analysis of Cortical Neural Networks}, journal = {BioVis 2011 Abstracts, 1st IEEE Symposium on Biological Data Visualization}, year = {2011}, language = {en} } @article{HegeKoppitzMarquardtetal.2011, author = {Hege, Hans-Christian and Koppitz, Michael and Marquardt, Falko and McDonald, Chris and Mielack, Christopher}, title = {Visual Analysis of Quantum Physics Data}, journal = {Quantum Dynamic Imaging}, publisher = {Springer}, doi = {10.1007/978-1-4419-9491-2_6}, pages = {71 -- 87}, year = {2011}, language = {en} } @article{WiebelVosFoersteretal.2012, author = {Wiebel, Alexander and Vos, Frans and Foerster, David and Hege, Hans-Christian}, title = {WYSIWYP: What You See Is What You Pick}, volume = {18}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2012.292}, pages = {2236 -- 2244}, year = {2012}, language = {en} } @inproceedings{VosTielbeekNazirogluetal.2012, author = {Vos, Franciscus and Tielbeek, Jeroen and Naziroglu, Robiel and Li, Zhang and Schueffler, Peter and Mahapatra, Dwarikanath and Wiebel, Alexander and Lavini, Christina and Buhmann, Joachim and Hege, Hans-Christian and Stoker, Jaap and van Vliet, Lucas}, title = {Computational modeling for assessment of IBD: to be or not to be?}, booktitle = {2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)}, doi = {10.1109/EMBC.2012.6346837}, pages = {3974 -- 3977}, year = {2012}, language = {en} } @article{LindowBaumHege2012, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Interactive Rendering of Materials and Biological Structures on Atomic and Nanoscopic Scale}, volume = {31}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/j.1467-8659.2012.03128.x target}, pages = {1325 -- 1334}, year = {2012}, language = {en} } @article{PetzPoethkowHege2012, author = {Petz, Christoph and P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Probabilistic Local Features in Uncertain Vector Fields with Spatial Correlation}, volume = {31}, journal = {Computer Graphics Forum}, number = {3}, pages = {1045 -- 1054}, year = {2012}, language = {en} } @article{GoubergritsSchallerKertzscheretal.2012, author = {Goubergrits, Leonid and Schaller, Jens and Kertzscher, Ulrich and van den Bruck, Nils and P{\"o}thkow, Kai and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas}, title = {Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms}, volume = {9}, journal = {J. R. Soc. Interface}, number = {69}, doi = {10.1098/rsif.2011.0490}, pages = {677 -- 688}, year = {2012}, language = {en} } @misc{DercksenOberlaenderSakmannetal.2012, author = {Dercksen, Vincent J. and Oberlaender, Marcel and Sakmann, Bert and Hege, Hans-Christian}, title = {Interactive Visualization - a Key Prerequisite for Reconstruction of Anatomically Realistic Neural Networks}, journal = {Visualization in Medicine and Life Sciences II}, editor = {Linsen, Lars and Hagen, Hans and Hamann, Bernd and Hege, Hans-Christian}, publisher = {Springer, Berlin}, pages = {27 -- 44}, year = {2012}, language = {en} } @inproceedings{DercksenEggerHegeetal.2012, author = {Dercksen, Vincent J. and Egger, Robert and Hege, Hans-Christian and Oberlaender, Marcel}, title = {Synaptic Connectivity in Anatomically Realistic Neural Networks: Modeling and Visual Analysis}, booktitle = {Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM)}, address = {Norrk{\"o}ping, Sweden}, doi = {10.2312/VCBM/VCBM12/017-024}, pages = {17 -- 24}, year = {2012}, language = {en} } @misc{PfisterKaynigBothaetal.2012, author = {Pfister, Hanspeter and Kaynig, Verena and Botha, Charl and Bruckner, Stefan and Dercksen, Vincent J. and Hege, Hans-Christian and Roerdink, Jos}, title = {Visualization in Connectomics}, arxiv = {http://arxiv.org/abs/1206.1428}, doi = {10.1007/978-1-4471-6497-5_21}, year = {2012}, language = {en} } @article{WeberGreenanProhaskaetal.2012, author = {Weber, Britta and Greenan, Garrett and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian and M{\"u}ller-Reichert, Thomas and Hyman, Anthony and Verbavatz, Jean-Marc}, title = {Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos}, volume = {178}, journal = {Journal of Structural Biology}, number = {2}, doi = {10.1016/j.jsb.2011.12.004}, pages = {129 -- 138}, year = {2012}, language = {en} } @article{KastenReininghausHotzetal.2011, author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans-Christian}, title = {Two-Dimensional Time-Dependent Vortex Regions Based on the Acceleration Magnitude}, volume = {17}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, pages = {2080 -- 2087target}, year = {2011}, language = {en} } @article{TorsneyWeirSaadMoelleretal.2011, author = {Torsney-Weir, Thomas and Saad, Ahmed and M{\"o}ller, Torsten and Hege, Hans-Christian and Weber, Britta and Verbavatz, Jean-Marc}, title = {Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration}, volume = {17}, journal = {IEEE Trans. Vis. Comput. Graph.}, number = {12}, pages = {1892 -- 1901}, year = {2011}, language = {en} } @misc{KastenHotzNoacketal.2011, author = {Kasten, Jens and Hotz, Ingrid and Noack, Bernd and Hege, Hans-Christian}, title = {On the Extraction of Long-living Features in Unsteady Fluid Flows}, journal = {Topological Methods in Data Analysis and Visualization}, editor = {Pascucci, Valerio and Tricoche, Xavier and Hagen, Hans and Tierny, Julien}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-15013-5}, doi = {10.1007/978-3-642-15014-2_10}, pages = {115 -- 126}, year = {2011}, language = {en} } @article{HegeManzMarquardtetal.2010, author = {Hege, Hans-Christian and Manz, J{\"o}rn and Marquardt, Falko and Paulus, Beate and Schild, Axel}, title = {Electron Flux during Pericyclic Reactions in the Tunneling Limit: Quantum Simulation for Cyclooctatetraene}, volume = {376}, journal = {Chem. Phys}, number = {1-3}, doi = {10.1016/j.chemphys.2010.07.033}, pages = {46 -- 55}, year = {2010}, language = {en} } @misc{BredtmannMarquardtAndraeetal.2010, author = {Bredtmann, Timm and Marquardt, Falko and Andrae, Dirk and Barth, Ingo and Hege, Hans-Christian and Hoki, Kunihito and Kenfack, Anatole and Kono, Hirohiko and Manz, J{\"o}rn and Paulus, Beate}, title = {Electronic and Nuclear Fluxes during Pericyclic Reactions: Quantum Simulations for the Cope Rearrangement of Semibullvalene}, publisher = {International Symposium on Theoretical and Computational Chemistry, 28 Feb - 2 March, 2010, Max-Planck-Institut f{\"u}r Kohlenforschung, M{\"u}lheim an der Ruhr, Germany}, year = {2010}, language = {en} } @misc{BredtmannMarquardtAndraeetal.2010, author = {Bredtmann, Timm and Marquardt, Falko and Andrae, Dirk and Barth, Ingo and Hege, Hans-Christian and Manz, J{\"o}rn and Paulus, Beate}, title = {Electronic and Nuclear Fluxes During Pericyclic Reactions: Quantum Simulations for the Cope Rearrangement of Semibullvalene}, publisher = {CSTC 2010 - 17th Canadian Symposium on Theoretical Chemistry, July 25-30, 2010, Edmonton, Alberta, Canada}, year = {2010}, language = {en} } @article{OberleithnerSieberNayerietal.2010, author = {Oberleithner, Kilian and Sieber, Moritz and Nayeri, Christian and Paschereit, Christian and Petz, Christoph and Hege, Hans-Christian and Noack, Bernd and Wygnanski, Israel}, title = {Self Excited Oscillations in Swirling Jets: Stability Analysis and Empirical Mode Construction}, volume = {55}, journal = {Bulletin of the American Physical Society}, number = {16}, pages = {GE.00008}, year = {2010}, language = {en} } @misc{KastenReininghausOberleithneretal.2010, author = {Kasten, Jens and Reininghaus, Jan and Oberleithner, Kilian and Hotz, Ingrid and Noack, Bernd and Hege, Hans-Christian}, title = {Flow over a Cavity - Evolution of the Vortex Skeleton}, publisher = {Visualization at 28th Annual Gallery of Fluid Motion exhibit, held at the 63th Annual Meeting of the American Physical Society, Division of Fluid Dynamics (Long Beach, CA, USA, November 21-23, 2010).}, year = {2010}, language = {en} } @article{DworzakLameckervonBergetal.2009, author = {Dworzak, Jalda and Lamecker, Hans and von Berg, Jens and Klinder, Tobias and Lorenz, Cristian and Kainm{\"u}ller, Dagmar and Seim, Heiko and Hege, Hans-Christian and Zachow, Stefan}, title = {3D Reconstruction of the Human Rib Cage from 2D Projection Images using a Statistical Shape Model}, volume = {5}, journal = {Int. J. Comput. Assist. Radiol. Surg.}, number = {2}, publisher = {Springer}, issn = {1861-6410}, doi = {10.1007/s11548-009-0390-2}, pages = {111 -- 124}, year = {2009}, language = {en} } @inproceedings{GuentherMcGuireWalteretal.2010, author = {G{\"u}nther, David and McGuire, Patrick C. and Walter, Sebastian and Weinkauf, Tino and Hege, Hans-Christian}, title = {Extraction of Valley Networks in Mars Elevation Maps}, volume = {5}, booktitle = {Proc. European Planetary Science Congress}, pages = {EPSC2010 -- 216}, year = {2010}, language = {en} } @article{LacarellePMoeckPaschereitetal.2010, author = {Lacarelle, Arnaud and P. Moeck, Jonas and Paschereit, Christian and Gelbert, Gregor and King, Rudibert and M. Luchtenburg, Dirk and Noack, Bernd R. and Kasten, Jens and Hege, Hans-Christian}, title = {Modeling a Fuel/Air Mixing to Control the Pressure Pulsations and NOx Emissions in a Lean Premixed Combustor}, volume = {108}, journal = {Active Flow Control II}, publisher = {Springer, Berlin}, doi = {10.1007/978-3-642-11735-0_20}, pages = {307 -- 321}, year = {2010}, language = {en} } @article{LindowBaumProhaskaetal.2010, author = {Lindow, Norbert and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {Accelerated Visualization of Dynamic Molecular Surfaces}, volume = {29}, journal = {Comput. Graph. Forum}, doi = {10.1111/j.1467-8659.2009.01693.x}, pages = {943 -- 952}, year = {2010}, language = {en} } @inproceedings{ReininghausGuentherHotzetal.2010, author = {Reininghaus, Jan and G{\"u}nther, David and Hotz, Ingrid and Prohaska, Steffen and Hege, Hans-Christian}, title = {TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory}, volume = {6327}, booktitle = {Mathematical Software - ICMS 2010}, publisher = {Springer}, doi = {10.1007/978-3-642-15582-6_35}, pages = {198 -- 208}, year = {2010}, language = {en} } @article{RybakKussLameckeretal.2010, author = {Rybak, J{\"u}rgen and Kuß, Anja and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian and Lienhard, Matthias and Singer, Jochen and Neubert, Kerstin and Menzel, Randolf}, title = {The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System}, volume = {4}, journal = {Front. Syst. Neurosci.}, number = {30}, doi = {10.3389/fnsys.2010.00030}, year = {2010}, language = {en} } @misc{WiebelHegeZiechetal.2011, author = {Wiebel, Alexander and Hege, Hans-Christian and Ziech, Manon and Caan, Matthan and Stoker, Jaap and Vos, Frans}, title = {DCE-MRI-oriented Volume Rendering for Monitoring of Crohn's Disease.}, journal = {BioVis 2011 Abstracts, 1st IEEE Symposium on Biological Data Visualization}, year = {2011}, language = {en} } @article{HegeKastenHotz2011, author = {Hege, Hans-Christian and Kasten, Jens and Hotz, Ingrid}, title = {Distillation and Visualization of Spatiotemporal Structures in Turbulent Flow Fields}, volume = {318}, journal = {J. Phys.}, edition = {6}, doi = {10.1088/1742-6596/318/6/062009}, pages = {062009}, year = {2011}, language = {en} } @article{PoethkowWeberHege2011, author = {P{\"o}thkow, Kai and Weber, Britta and Hege, Hans-Christian}, title = {Probabilistic Marching Cubes}, volume = {30}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/j.1467-8659.2011.01942.x}, pages = {931 -- 940}, year = {2011}, language = {en} } @article{PoethkowHege2011, author = {P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures}, volume = {17}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {10}, doi = {10.1109/TVCG.2010.247}, pages = {1393 -- 1406}, year = {2011}, language = {en} } @article{OberleithnerSieberNayerietal.2011, author = {Oberleithner, Kilian and Sieber, Moritz and Nayeri, Christian and Paschereit, Christian and Petz, Christoph and Hege, Hans-Christian and Noack, Bernd and J. Wygnanski, Israel}, title = {Three-dimensional Coherent Structures of the Swirling Jet Undergoing Vortex breakdown: Stability Analysis and Empirical Mode Construction}, volume = {679}, journal = {J. Fluid Mech.}, doi = {10.1017/jfm.2011.141}, pages = {383 -- 414}, year = {2011}, language = {en} } @misc{GuentherReininghausProhaskaetal.2012, author = {G{\"u}nther, David and Reininghaus, Jan and Prohaska, Steffen and Weinkauf, Tino and Hege, Hans-Christian}, title = {Efficient Computation of a Hierarchy of Discrete 3D Gradient Vector Fields}, journal = {Topological Methods in Data Analysis and Visualization II}, editor = {Peikert, Ronny and Hauser, Helwig and Carr, Hamish}, publisher = {Springer}, doi = {10.1007/978-3-642-23175-9_2}, pages = {15 -- 29}, year = {2012}, language = {en} } @misc{KastenHotzHege2012, author = {Kasten, Jens and Hotz, Ingrid and Hege, Hans-Christian}, title = {On the Elusive Concept of Lagrangian Coherent Structures}, journal = {Topological Methods in Data Analysis and Visualization II}, editor = {Peikert, Ronald and Hauser, Helwig and Carr, Hamish and Fuchs, Raphael}, publisher = {Springer}, doi = {10.1007/978-3-642-23175-9_14}, pages = {207 -- 220}, year = {2012}, language = {en} } @article{AndraeBarthBredtmannetal.2011, author = {Andrae, Dirk and Barth, Ingo and Bredtmann, Timm and Hege, Hans-Christian and Manz, J{\"o}rn and Marquardt, Falko and Paulus, Beate}, title = {Electronic Quantum Fluxes During Pericyclic Reactions Exemplified for the Cope Rearrangement of Semibullvalene}, volume = {115}, journal = {J. Phys. Chem. B}, number = {18}, doi = {10.1021/jp110365g}, pages = {5476 -- 5483}, year = {2011}, language = {en} } @inproceedings{BindernagelKainmuellerSeimetal.2011, author = {Bindernagel, Matthias and Kainm{\"u}ller, Dagmar and Seim, Heiko and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {An Articulated Statistical Shape Model of the Human Knee}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2011}, publisher = {Springer}, doi = {10.1007/978-3-642-19335-4_14}, pages = {59 -- 63}, year = {2011}, language = {en} } @inproceedings{WeberMoellerVerbavatzetal.2011, author = {Weber, Britta and M{\"o}ller, Marit and Verbavatz, Jean-Marc and Baum, Daniel and Hege, Hans-Christian and Prohaska, Steffen}, title = {Fast Tracing of Microtubule Centerlines in Electron Tomograms}, booktitle = {BioVis 2011 Abstracts, 1st IEEE Symposium on Biological Data Visualization}, year = {2011}, language = {en} } @article{KastenPetzHotzetal.2010, author = {Kasten, Jens and Petz, Christoph and Hotz, Ingrid and Hege, Hans-Christian and Noack, Bernd and Tadmor, Gilead}, title = {Lagrangian Feature Extraction of the Cylinder Wake}, volume = {22}, journal = {Physics of Fluids}, number = {9}, doi = {10.1063/1.3483220}, pages = {091108}, year = {2010}, language = {en} } @inproceedings{KainmuellerLameckerSeimetal.2010, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Seim, Heiko and Zachow, Stefan and Hege, Hans-Christian}, title = {Improving Deformable Surface Meshes through Omni-directional Displacements and MRFs}, volume = {6361}, booktitle = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI)}, editor = {Navab, Tianzi and P. W. Pluim, Josien and Viergever, Max}, publisher = {Springer}, doi = {10.1007/978-3-642-15705-9_28}, pages = {227 -- 234}, year = {2010}, language = {en} } @inproceedings{LindowBaumBondaretal.2012, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Dynamic Channels in Biomolecular Systems: Path Analysis and Visualization}, booktitle = {Proceedings of IEEE Symposium on Biological Data Visualization (biovis'12)}, doi = {10.1109/BioVis.2012.6378599}, pages = {99 -- 106}, year = {2012}, language = {en} } @incollection{PoethkowHege2012, author = {P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Uncertainty Propagation in DT-MRI Anisotropy Isosurface Extraction}, booktitle = {New Developments in the Visualization and Processing of Tensor Fields}, editor = {Laidlaw, David and Vilanova, Anna}, publisher = {Springer}, address = {Berlin}, pages = {209 -- 225}, year = {2012}, language = {en} } @article{LindowBaumHege2012, author = {Lindow, Norbert and Baum, Daniel and Hege, Hans-Christian}, title = {Perceptually Linear Parameter Variations}, volume = {31}, journal = {Computer Graphics Forum}, number = {2}, doi = {10.1111/j.1467-8659.2012.03054.x target}, pages = {535 -- 544}, year = {2012}, language = {en} } @incollection{DercksenBruessStallingetal.2008, author = {Dercksen, Vincent J. and Br{\"u}ß, Cornelia and Stalling, Detlev and Gubatz, Sabine and Seiffert, Udo and Hege, Hans-Christian}, title = {Towards automatic generation of 3D models of biological objects based on serial sections}, booktitle = {Visualization in Medicine and Life Sciences}, publisher = {Springer-Verlag Berlin Heidelberg}, doi = {10.1007/978-3-540-72630-2}, pages = {3 -- 25}, year = {2008}, language = {en} } @inproceedings{PoethkeGoubergritsKertzscheretal.2008, author = {Poethke, Jens and Goubergrits, Leonid and Kertzscher, Ulrich and Spuler, Andreas and Petz, Christoph and Hege, Hans-Christian}, title = {Impact of imaging modality for analysis of a cerebral aneurysm: Comparison between CT, MRI and 3DRA}, booktitle = {Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering}, editor = {Jos Vander Sloten, Pascal and Haueisen, Jens}, publisher = {Springer-Verlag}, address = {Antwerp, Belgium}, doi = {10.1007/978-3-540-89208-3}, pages = {1889 -- 1893}, year = {2008}, language = {en} } @article{HellerMatziolisKoenigetal.2007, author = {Heller, Markus O. and Matziolis, Georg and K{\"o}nig, Christian and Taylor, William R. and Hinterwimmer, S. and Graichen, H. and Hege, Hans-Christian and Bergmann, G. and Perka, Carsten and Duda, G. N.}, title = {Muskuloskelettale Biomechanik des Kniegelenks - Grundlagen f{\"u}r die pr{\"a}operative Planung von Umstellung und Gelenkersatz}, volume = {36}, journal = {Der Orthop{\"a}de}, number = {7}, doi = {10.1007/s00132-007-1115-2}, pages = {628 -- 634}, year = {2007}, language = {en} } @inproceedings{KaehlerAbelHege2007, author = {K{\"a}hler, Ralf and Abel, Tom and Hege, Hans-Christian}, title = {Simultaneous GPU-Assisted Raycasting of Unstructured Point Sets and Volumetric Grid Data}, booktitle = {Proceedings of IEEE/EG International Symposium on Volume Graphics 2007}, publisher = {A K Peters}, address = {Prague, Czech Republic}, pages = {49 -- 56}, year = {2007}, language = {en} } @article{GoubergritsWeberPetzetal.2009, author = {Goubergrits, Leonid and Weber, Sarah and Petz, Christoph and Spuler, Andreas and P{\"o}thke, Jens and Berthe, Andr{\´e} and Hege, Hans-Christian}, title = {Wall-PIV as a Near Wall Flow Validation Tool for CFD}, volume = {12}, journal = {Journal of Visualization}, number = {3}, pages = {241 -- 250}, year = {2009}, language = {en} } @article{GoubergritsWellnhoferKertzscheretal.2009, author = {Goubergrits, Leonid and Wellnhofer, Ernst and Kertzscher, Ulrich and Affeld, Klaus and Petz, Christoph and Hege, Hans-Christian}, title = {Coronary Artery WSS Profiling Using a Geometry Reconstruction Based on Biplane Angiography}, volume = {37}, journal = {Annals of Biomedical Engineering}, number = {4}, publisher = {Springer}, doi = {s10439-009-9656-7}, pages = {682 -- 691}, year = {2009}, language = {en} } @article{PetzKastenProhaskaetal.2009, author = {Petz, Christoph and Kasten, Jens and Prohaska, Steffen and Hege, Hans-Christian}, title = {Hierarchical Vortex Regions in Swirling Flow}, volume = {28}, journal = {Computer Graphics Forum}, number = {3}, pages = {863 -- 870}, year = {2009}, language = {en} } @inproceedings{DercksenWeberGuentheretal.2009, author = {Dercksen, Vincent J. and Weber, Britta and G{\"u}nther, David and Oberlaender, Marcel and Prohaska, Steffen and Hege, Hans-Christian}, title = {Automatic alignment of stacks of filament data}, booktitle = {Proc. IEEE International Symposium on Biomedical Imaging}, publisher = {IEEE press}, address = {Boston, USA}, pages = {971 -- 974}, year = {2009}, language = {en} } @inproceedings{KainmuellerLameckerZachowetal.2009, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {An Articulated Statistical Shape Model for Accurate Hip Joint Segmentation}, booktitle = {EBMC 2009. Int. Conf. of the IEEE Eng. in Med. and Biol. Society (EMBC)}, address = {Minneapolis, USA}, pages = {6345 -- 6351}, year = {2009}, language = {en} } @inproceedings{SeimKainmuellerHelleretal.2009, author = {Seim, Heiko and Kainm{\"u}ller, Dagmar and Heller, Markus O. and Zachow, Stefan and Hege, Hans-Christian}, title = {Automatic Extraction of Anatomical Landmarks from Medical Image Data: An Evaluation of Different Methods}, booktitle = {Proc. of IEEE Int. Symposium on Biomedical Imaging (ISBI)}, address = {Boston, MA, USA}, pages = {538 -- 541}, year = {2009}, language = {en} } @inproceedings{RosanwoPetzProhaskaetal.2009, author = {Rosanwo, Olufemi and Petz, Christoph and Prohaska, Steffen and Hotz, Ingrid and Hege, Hans-Christian}, title = {Dual Streamline Seeding}, booktitle = {Proceedings of the IEEE Pacific Visualization Symposium}, editor = {Eades, Peter and Ertl, Thomas and Shen, Han-Wei}, address = {Beijing, China}, pages = {9 -- 16}, year = {2009}, language = {en} } @inproceedings{RybakKussHolleretal.2009, author = {Rybak, J{\"u}rgen and Kuß, Anja and Holler, Wolfgang and Brandt, Robert and Hege, Hans-Christian and Menzel, Randolf}, title = {The HoneyBee Standard Brain (HSB) - a versatile atlas tool for integrating data and data exchange in the neuroscience community}, volume = {10 (Suppl 1):P1}, booktitle = {BMC Neuroscience}, doi = {10.1186/1471-2202-10-S1-P1}, year = {2009}, language = {en} } @article{OberlaenderDercksenEggeretal.2009, author = {Oberlaender, Marcel and Dercksen, Vincent J. and Egger, Robert and Gensel, Maria and Sakmann, Bert and Hege, Hans-Christian}, title = {Automated three-dimensional detection and counting of neuron somata}, volume = {180}, journal = {Journal of Neuroscience Methods}, number = {1}, doi = {10.1016/j.jneumeth.2009.03.008}, pages = {147 -- 160}, year = {2009}, language = {en} }