@article{MahnkeArltBaumetal.2020, author = {Mahnke, Heinz-Eberhard and Arlt, Tobias and Baum, Daniel and Hege, Hans-Christian and Herter, Felix and Lindow, Norbert and Manke, Ingo and Siopi, Tzulia and Menei, Eve and Etienne, Marc and Lepper, Verena}, title = {Virtual unfolding of folded papyri}, volume = {41}, journal = {Journal of Cultural Heritage}, publisher = {Elsevier}, doi = {10.1016/j.culher.2019.07.007}, pages = {264 -- 269}, year = {2020}, abstract = {The historical importance of ancient manuscripts is unique since they provide information about the heritage of ancient cultures. Often texts are hidden in rolled or folded documents. Due to recent impro- vements in sensitivity and resolution, spectacular disclosures of rolled hidden texts were possible by X-ray tomography. However, revealing text on folded manuscripts is even more challenging. Manual unfolding is often too risky in view of the fragile condition of fragments, as it can lead to the total loss of the document. X-ray tomography allows for virtual unfolding and enables non-destructive access to hid- den texts. We have recently demonstrated the procedure and tested unfolding algorithms on a mockup sample. Here, we present results on unfolding ancient papyrus packages from the papyrus collection of the Mus{\´e}e du Louvre, among them objects folded along approximately orthogonal folding lines. In one of the packages, the first identification of a word was achieved, the Coptic word for "Lord".}, language = {en} } @inproceedings{FroehlerdaCunhaMeloWeissenboecketal.2019, author = {Fr{\"o}hler, Bernhard and da Cunha Melo, Lucas and Weissenb{\"o}ck, Johannes and Kastner, Johann and M{\"o}ller, Torsten and Hege, Hans-Christian and Gr{\"o}ller, Eduard M. and Sanctorum, Jonathan and De Beenhouwer, Jan and Sijbers, Jan and Heinzl, Christoph}, title = {Tools for the analysis of datasets from X-ray computed tomography based on Talbot-Lau grating interferometry}, booktitle = {Proceedings of iCT 2019, (9th Conference on Industrial Computed Tomography, Padova, Italy - iCT 2019, February 13-15, 2019)}, number = {paper 52}, pages = {8}, year = {2019}, abstract = {This work introduces methods for analyzing the three imaging modalities delivered by Talbot-Lau grating interferometry X-ray computed tomography (TLGI-XCT). The first problem we address is providing a quick way to show a fusion of all three modal- ities. For this purpose the tri-modal transfer function widget is introduced. The widget controls a mixing function that uses the output of the transfer functions of all three modalities, allowing the user to create one customized fused image. A second problem prevalent in processing TLGI-XCT data is a lack of tools for analyzing the segmentation process of such multimodal data. We address this by providing methods for computing three types of uncertainty: From probabilistic segmentation algorithms, from the voxel neighborhoods as well as from a collection of results. We furthermore introduce a linked views interface to explore this data. The techniques are evaluated on a TLGI-XCT scan of a carbon-fiber reinforced dataset with impact damage. We show that the transfer function widget accelerates and facilitates the exploration of this dataset, while the uncertainty analysis methods give insights into how to tweak and improve segmentation algorithms for more suitable results.}, language = {en} } @article{GoubergritsHellmeierBrueningetal.2019, author = {Goubergrits, Leonid and Hellmeier, Florian and Bruening, Jan Joris and Spuler, Andreas and Hege, Hans-Christian and Voss, Samuel and Janiga, G{\´a}bor and Saalfeld, Sylvia and Beuing, Oliver and Berg, Philipp}, title = {Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Uncertainty Quantification of Geometric Rupture Risk Parameters}, volume = {18}, journal = {BioMedical Engineering OnLine}, number = {35}, doi = {10.1186/s12938-019-0657-y}, year = {2019}, abstract = {Background Geometric parameters have been proposed for prediction of cerebral aneurysm rupture risk. Predicting the rupture risk for incidentally detected unruptured aneurysms could help clinicians in their treatment decision. However, assessment of geometric parameters depends on several factors, including the spatial resolution of the imaging modality used and the chosen reconstruction procedure. The aim of this study was to investigate the uncertainty of a variety of previously proposed geometric parameters for rupture risk assessment, caused by variability of reconstruction procedures. Materials 26 research groups provided segmentations and surface reconstructions of five cerebral aneurysms as part of the Multiple Aneurysms AnaTomy CHallenge (MATCH) 2018. 40 dimensional and non-dimensional geometric parameters, describing aneurysm size, neck size, and irregularity of aneurysm shape, were computed. The medians as well as the absolute and relative uncertainties of the parameters were calculated. Additionally, linear regression analysis was performed on the absolute uncertainties and the median parameter values. Results A large variability of relative uncertainties in the range between 3.9 and 179.8\% was found. Linear regression analysis indicates that some parameters capture similar geometric aspects. The lowest uncertainties < 6\% were found for the non-dimensional parameters isoperimetric ratio, convexity ratio, and ellipticity index. Uncertainty of 2D and 3D size parameters was significantly higher than uncertainty of 1D parameters. The most extreme uncertainties > 80\% were found for some curvature parameters. Conclusions Uncertainty analysis is essential on the road to clinical translation and use of rupture risk prediction models. Uncertainty quantification of geometric rupture risk parameters provided by this study may help support development of future rupture risk prediction models.}, language = {en} } @article{FroehlerElberfeldMoelleretal.2019, author = {Fr{\"o}hler, Bernhard and Elberfeld, Tim and M{\"o}ller, Torsten and Hege, Hans-Christian and Weissenb{\"o}ck, Johannes and De Beenhouwer, Jan and Sijbers, Jan and Kastner, Johann and Heinzl, Christoph}, title = {A Visual Tool for the Analysis of Algorithms for Tomographic Fiber Reconstruction in Materials Science}, volume = {38}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/cgf.13688}, pages = {273 -- 283}, year = {2019}, abstract = {We present visual analysis methods for the evaluation of tomographic fiber reconstruction algorithms by means of analysis, visual debugging and comparison of reconstructed fibers in materials science. The methods are integrated in a tool (FIAKER) that supports the entire workflow. It enables the analysis of various fiber reconstruction algorithms, of differently parameterized fiber reconstruction algorithms and of individual steps in iterative fiber reconstruction algorithms. Insight into the performance of fiber reconstruction algorithms is obtained by a list-based ranking interface. A 3D view offers interactive visualization techniques to gain deeper insight, e.g., into the aggregated quality of the examined fiber reconstruction algorithms and parameterizations. The tool was designed in close collaboration with researchers who work with fiber-reinforced polymers on a daily basis and develop algorithms for tomographic reconstruction and characterization of such materials. We evaluate the tool using synthetic datasets as well as tomograms of real materials. Five case studies certify the usefulness of the tool, showing that it significantly accelerates the analysis and provides valuable insights that make it possible to improve the fiber reconstruction algorithms. The main contribution of the paper is the well-considered combination of methods and their seamless integration into a visual tool that supports the entire workflow. Further findings result from the analysis of (dis-)similarity measures for fibers as well as from the discussion of design decisions. It is also shown that the generality of the analytical methods allows a wider range of applications, such as the application in pore space analysis.}, language = {en} } @article{UdvaryHarthMackeetal.2020, author = {Udvary, Daniel and Harth, Philipp and Macke, Jakob H. and Hege, Hans-Christian and de Kock, Christiaan P. J. and Sakmann, Bert and Oberlaender, Marcel}, title = {A Theory for the Emergence of Neocortical Network Architecture}, journal = {BioRxiv}, doi = {https://doi.org/10.1101/2020.11.13.381087}, year = {2020}, language = {en} } @article{PoethkowPetzHege2013, author = {P{\"o}thkow, Kai and Petz, Christoph and Hege, Hans-Christian}, title = {Approximate Level-Crossing Probabilities for Interactive Visualization of Uncertain Isocontours}, volume = {3}, journal = {International Journal for Uncertainty Quantification}, number = {2}, doi = {10.1615/Int.J.UncertaintyQuantification.2012003958}, pages = {101 -- 117}, year = {2013}, language = {en} } @misc{HombergBaumWiebeletal.2014, author = {Homberg, Ulrike and Baum, Daniel and Wiebel, Alexander and Prohaska, Steffen and Hege, Hans-Christian}, title = {Definition, Extraction, and Validation of Pore Structures in Porous Materials}, journal = {Topological Methods in Data Analysis and Visualization III}, editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald}, publisher = {Springer}, doi = {10.1007/978-3-319-04099-8_15}, pages = {235 -- 248}, year = {2014}, language = {en} } @inproceedings{KlindtProhaskaBaumetal.2012, author = {Klindt, Marco and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian}, title = {Conveying Archaeological Contexts to Museum Visitors: Case Study Pergamon Exhibition}, booktitle = {VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers}, editor = {Arnold, David and Kaminski, Jaime and Niccolucci, Franco and Stork, Andre}, publisher = {Eurographics Association}, address = {Brighton, UK}, doi = {10.2312/PE/VAST/VAST12S/025-028}, pages = {25 -- 28}, year = {2012}, language = {en} } @inproceedings{KlindtBaumProhaskaetal.2012, author = {Klindt, Marco and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {iCon.text - a customizable iPad app for kiosk applications in museum exhibitions}, booktitle = {EVA 2012 Berlin}, publisher = {Gesellschaft zur F{\"o}rderung angewandter Informatik e.V.}, address = {Volmerstraße 3, 12489 Berlin}, pages = {150 -- 155}, year = {2012}, language = {en} } @inproceedings{WiebelPreisVosetal.2013, author = {Wiebel, Alexander and Preis, Philipp and Vos, Frans and Hege, Hans-Christian}, title = {3D Strokes on Visible Structures in Direct Volume Rendering}, booktitle = {EuroVis - Short Papers}, editor = {Hlawitschka, Mario and Weinkauf, Tino}, publisher = {Eurographics Association}, doi = {10.2312/PE.EuroVisShort.EuroVisShort2013.091-095}, pages = {91 -- 95}, year = {2013}, language = {en} }