@article{EhlkeRammLameckeretal.2013, author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Hege, Hans-Christian and Zachow, Stefan}, title = {Fast Generation of Virtual X-ray Images for Reconstruction of 3D Anatomy}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {19}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2013.159}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-35928}, pages = {2673 -- 2682}, year = {2013}, language = {en} } @inproceedings{WiebelPreisVosetal.2013, author = {Wiebel, Alexander and Preis, Philipp and Vos, Frans and Hege, Hans-Christian}, title = {3D Strokes on Visible Structures in Direct Volume Rendering}, series = {EuroVis - Short Papers}, booktitle = {EuroVis - Short Papers}, editor = {Hlawitschka, Mario and Weinkauf, Tino}, publisher = {Eurographics Association}, doi = {10.2312/PE.EuroVisShort.EuroVisShort2013.091-095}, pages = {91 -- 95}, year = {2013}, language = {en} } @inproceedings{KuhnLindowGuentheretal.2013, author = {Kuhn, Alexander and Lindow, Norbert and G{\"u}nther, Tobias and Wiebel, Alexander and Theisel, Holger and Hege, Hans-Christian}, title = {Trajectory Density Projection for Vector Field Visualization}, series = {EuroVis 2013, short papers. M. Hlawitschka, Tino Weinkauf (eds.)}, booktitle = {EuroVis 2013, short papers. M. Hlawitschka, Tino Weinkauf (eds.)}, doi = {10.2312/PE.EuroVisShort.EuroVisShort2013.031-035}, pages = {31 -- 35}, year = {2013}, language = {en} } @article{PoethkowHege2013, author = {P{\"o}thkow, Kai and Hege, Hans-Christian}, title = {Nonparametric Models for Uncertainty Visualization}, series = {Computer Graphics Forum}, volume = {32}, journal = {Computer Graphics Forum}, number = {3}, doi = {10.1111/cgf.12100 target}, pages = {131 -- 140}, year = {2013}, language = {en} } @article{LindowBaumBondaretal.2013, author = {Lindow, Norbert and Baum, Daniel and Bondar, Ana-Nicoleta and Hege, Hans-Christian}, title = {Exploring cavity dynamics in biomolecular systems}, series = {BMC Bioinformatics}, volume = {14}, journal = {BMC Bioinformatics}, edition = {(Suppl 19):S5}, doi = {10.1186/1471-2105-14-S19-S5}, year = {2013}, language = {en} } @article{PoethkowPetzHege2013, author = {P{\"o}thkow, Kai and Petz, Christoph and Hege, Hans-Christian}, title = {Approximate Level-Crossing Probabilities for Interactive Visualization of Uncertain Isocontours}, series = {International Journal for Uncertainty Quantification}, volume = {3}, journal = {International Journal for Uncertainty Quantification}, number = {2}, doi = {10.1615/Int.J.UncertaintyQuantification.2012003958}, pages = {101 -- 117}, year = {2013}, language = {en} } @misc{HombergBaumWiebeletal., author = {Homberg, Ulrike and Baum, Daniel and Wiebel, Alexander and Prohaska, Steffen and Hege, Hans-Christian}, title = {Definition, Extraction, and Validation of Pore Structures in Porous Materials}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42510}, abstract = {An intuitive and sparse representation of the void space of porous materials supports the efficient analysis and visualization of interesting qualitative and quantitative parameters of such materials. We introduce definitions of the elements of this void space, here called pore space, based on its distance function, and present methods to extract these elements using the extremal structures of the distance function. The presented methods are implemented by an image processing pipeline that determines pore centers, pore paths and pore constrictions. These pore space elements build a graph that represents the topology of the pore space in a compact way. The representations we derive from μCT image data of realistic soil specimens enable the computation of many statistical parameters and, thus, provide a basis for further visual analysis and application-specific developments. We introduced parts of our pipeline in previous work. In this chapter, we present additional details and compare our results with the analytic computation of the pore space elements for a sphere packing in order to show the correctness of our graph computation.}, language = {en} } @article{KainmuellerLameckerHelleretal.2013, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Heller, Markus O. and Weber, Britta and Hege, Hans-Christian and Zachow, Stefan}, title = {Omnidirectional Displacements for Deformable Surfaces}, series = {Medical Image Analysis}, volume = {17}, journal = {Medical Image Analysis}, number = {4}, publisher = {Elsevier}, doi = {10.1016/j.media.2012.11.006}, pages = {429 -- 441}, year = {2013}, language = {en} } @article{GoubergritsSchallerKertzscheretal., author = {Goubergrits, Leonid and Schaller, Jens and Kertzscher, Ulrich and Petz, Christoph and Hege, Hans-Christian and Spuler, Andreas}, title = {Reproducibility of Image-Based Analysis of Cerebral Aneurysm Geometry and Hemodynamics: An In-Vitro Study of Magnetic Resonance Imaging, Computed Tomography, and Three-Dimensional Rotational Angiography}, series = {Journal of Neurological Surgery, Part A: Central European Neurosurgery}, volume = {74}, journal = {Journal of Neurological Surgery, Part A: Central European Neurosurgery}, number = {5}, doi = {10.1055/s-0033-1342937}, pages = {294 -- 302}, language = {en} } @misc{EhlkeRammLameckeretal., author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Hege, Hans-Christian and Zachow, Stefan}, title = {Fast Generation of Virtual X-ray Images from Deformable Tetrahedral Meshes}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-41896}, abstract = {We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g.\ pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach contributes in orthopedic surgery, where 3D anatomy information needs to be extracted from 2D X-rays to support surgeons in better planning joint replacements.}, language = {en} }