@article{SchweigerLiers, author = {Schweiger, Jonas and Liers, Frauke}, title = {A Decomposition Approach for Optimal Gas Network Extension with a Finite Set of Demand Scenarios}, series = {Optimization and Engineering}, volume = {19}, journal = {Optimization and Engineering}, number = {2}, publisher = {Springer}, pages = {297 -- 326}, abstract = {Today's gas markets demand more flexibility from the network operators which in turn have to invest into their network infrastructure. As these investments are very cost-intensive and long-living, network extensions should not only focus on a single bottleneck scenario, but should increase the flexibility to fulfill different demand scenarios. In this work, we formulate a model for the network extension problem for multiple demand scenarios and propose a scenario decomposition in order to solve the arising challenging optimization tasks. In fact, each subproblem consists of a mixed-integer nonlinear optimization problem (MINLP). Valid bounds on the objective value are derived even without solving the subproblems to optimality. Furthermore, we develop heuristics that prove capable of improving the initial solutions substantially. Results of computational experiments on realistic network topologies are presented. It turns out that our method is able to solve these challenging instances to optimality within a reasonable amount of time.}, language = {en} } @book{AbbinkBaermannBešinovicetal., author = {Abbink, Erwin and B{\"a}rmann, Andreas and Bešinovic, Nikola and Bohlin, Markus and Cacchiani, Valentina and Caimi, Gabrio and de Fabris, Stefano and Dollevoet, Twan and Fischer, Frank and F{\"u}genschuh, Armin and Galli, Laura and Goverde, Rob M.P. and Hansmann, Ronny and Homfeld, Henning and Huisman, Dennis and Johann, Marc and Klug, Torsten and T{\"o}rnquist Krasemann, Johanna and Kroon, Leo and Lamorgese, Leonardo and Liers, Frauke and Mannino, Carlo and Medeossi, Giorgio and Pacciarelli, Dario and Reuther, Markus and Schlechte, Thomas and Schmidt, Marie and Sch{\"o}bel, Anita and Sch{\"u}lldorf, Hanno and Stieber, Anke and Stiller, Sebastian and Toth, Paolo and Zimmermann, Uwe}, title = {Handbook of Optimization in the Railway Industry}, volume = {268}, editor = {Bornd{\"o}rfer, Ralf and Klug, Torsten and Lamorgese, Leonardo and Mannino, Carlo and Reuther, Markus and Schlechte, Thomas}, publisher = {Springer Verlag}, isbn = {978-3-319-72152-1}, doi = {10.1007/978-3-319-72153-8}, abstract = {This book promotes the use of mathematical optimization and operations research methods in rail transportation. The editors assembled thirteen contributions from leading scholars to present a unified voice, standardize terminology, and assess the state-of-the-art. There are three main clusters of articles, corresponding to the classical stages of the planning process: strategic, tactical, and operational. These three clusters are further subdivided into five parts which correspond to the main phases of the railway network planning process: network assessment, capacity planning, timetabling, resource planning, and operational planning. Individual chapters cover: Simulation Capacity Assessment Network Design Train Routing Robust Timetabling Event Scheduling Track Allocation Blocking Shunting Rolling Stock Crew Scheduling Dispatching Delay Propagation}, language = {en} } @article{KevinMartinBaermannBraunetal., author = {Kevin-Martin, Aigner and B{\"a}rmann, Andreas and Braun, Kristin and Liers, Frauke and Pokutta, Sebastian and Schneider, Oskar and Sharma, Kartikey and Tschuppik, Sebastian}, title = {Data-driven Distributionally Robust Optimization over Time}, series = {INFORMS Journal on Optimization}, volume = {5}, journal = {INFORMS Journal on Optimization}, number = {4}, doi = {10.1287/ijoo.2023.0091}, pages = {376 -- 394}, abstract = {Stochastic optimization (SO) is a classical approach for optimization under uncertainty that typically requires knowledge about the probability distribution of uncertain parameters. Because the latter is often unknown, distributionally robust optimization (DRO) provides a strong alternative that determines the best guaranteed solution over a set of distributions (ambiguity set). In this work, we present an approach for DRO over time that uses online learning and scenario observations arriving as a data stream to learn more about the uncertainty. Our robust solutions adapt over time and reduce the cost of protection with shrinking ambiguity. For various kinds of ambiguity sets, the robust solutions converge to the SO solution. Our algorithm achieves the optimization and learning goals without solving the DRO problem exactly at any step. We also provide a regret bound for the quality of the online strategy that converges at a rate of O(log T/T--√), where T is the number of iterations. Furthermore, we illustrate the effectiveness of our procedure by numerical experiments on mixed-integer optimization instances from popular benchmark libraries and give practical examples stemming from telecommunications and routing. Our algorithm is able to solve the DRO over time problem significantly faster than standard reformulations.}, language = {en} } @article{AignerClarnerLiersetal., author = {Aigner, Kevin-Martin and Clarner, Jan-Patrick and Liers, Frauke and Martin, Alexander}, title = {Robust Approximation of Chance Constrained DC Optimal Power Flow under Decision-Dependent Uncertainty}, series = {European Journal of Operational Research}, journal = {European Journal of Operational Research}, abstract = {We propose a mathematical optimization model and its solution for joint chance constrained DC Optimal Power Flow. In this application, it is particularly important that there is a high probability of transmission limits being satisfied, even in the case of uncertain or fluctuating feed-in from renewable energy sources. In critical network situations where the network risks overload, renewable energy feed-in has to be curtailed by the transmission system operator (TSO). The TSO can reduce the feed-in in discrete steps at each network node. The proposed optimization model minimizes curtailment while ensuring that there is a high probability of transmission limits being maintained. The latter is modeled via (joint) chance constraints that are computationally challenging. Thus, we propose a solution approach based on the robust safe approximation of these constraints. Hereby, probabilistic constraints are replaced by robust constraints with suitably defined uncertainty sets constructed from historical data. The ability to discretely control the power feed-in then leads to a robust optimization problem with decision-dependent uncertainties, i.e. the uncertainty sets depend on decision variables. We propose an equivalent mixed-integer linear reformulation for box uncertainties with the exact linearization of bilinear terms. Finally, we present numerical results for different test cases from the Nesta archive, as well as for a real network. We consider the discrete curtailment of solar feed-in, for which we use real-world weather and network data. The experimental tests demonstrate the effectiveness of this method and run times are very fast. Moreover, on average the calculated robust solutions only lead to a small increase in curtailment, when compared to nominal solutions.}, language = {en} }