@article{GutschePoulikakosHammerschmidtetal., author = {Gutsche, Philipp and Poulikakos, Lisa and Hammerschmidt, Martin and Burger, Sven and Schmidt, Frank}, title = {Time-harmonic optical chirality in inhomogeneous space}, series = {Proc. SPIE}, volume = {9756}, journal = {Proc. SPIE}, doi = {10.1117/12.2209551}, pages = {97560X}, language = {en} } @inproceedings{JaegerBarthHammerschmidtetal., author = {J{\"a}ger, Klaus and Barth, Carlo and Hammerschmidt, Martin and Herrmann, Sven and Burger, Sven and Schmidt, Frank and Becker, Christiane}, title = {Sinusoidal Nanotextures for Enhanced Light Management in Thin-Film Solar Cells}, series = {28th Workshop on Quantum Solar Energy Conversion - (QUANTSOL)}, booktitle = {28th Workshop on Quantum Solar Energy Conversion - (QUANTSOL)}, editor = {European Society for Quantum Solar Energy Conversion,}, language = {en} } @inproceedings{JaegerBarthHammerschmidtetal., author = {J{\"a}ger, Klaus and Barth, Carlo and Hammerschmidt, Martin and Herrmann, Sven and Burger, Sven and Schmidt, Frank and Becker, Christiane}, title = {Sinusoidal Nanotextures for Coupling Light into c-Si Thin-Film Solar Cells}, series = {Light, Energy and the Environement 2015}, booktitle = {Light, Energy and the Environement 2015}, doi = {10.1364/PV.2015.PTu4B.3}, pages = {PTu4B.3}, language = {en} } @article{JaegerKoeppelBarthetal., author = {J{\"a}ger, Klaus and K{\"o}ppel, Grit and Barth, Carlo and Hammerschmidt, Martin and Herrmann, Sven and Burger, Sven and Schmidt, Frank and Becker, Christiane}, title = {Sinusoidal gratings for optimized light management in c-Si thin-film solar cells}, series = {Proc. SPIE}, volume = {9898}, journal = {Proc. SPIE}, doi = {10.1117/12.2225459}, pages = {989808}, language = {en} } @article{JaegerBarthHammerschmidtetal., author = {J{\"a}ger, Klaus and Barth, Carlo and Hammerschmidt, Martin and Herrmann, Sven and Burger, Sven and Schmidt, Frank and Becker, Christiane}, title = {Simulations of sinusoidal nanotextures for coupling light into c-Si thin-film solar cells}, series = {Opt. Express}, volume = {24}, journal = {Opt. Express}, doi = {10.1364/OE.24.00A569}, pages = {A569}, language = {en} } @inproceedings{BurgerHammerschmidtHerrmannetal., author = {Burger, Sven and Hammerschmidt, Martin and Herrmann, Sven and Pomplun, Jan and Schmidt, Frank}, title = {Reduced basis methods for optimization of nano-photonic devices}, series = {Proc. Int. Conf. Numerical Simulation of Optoelectronic Devices (NUSOD)}, booktitle = {Proc. Int. Conf. Numerical Simulation of Optoelectronic Devices (NUSOD)}, doi = {10.1109/NUSOD.2015.7292871}, pages = {159}, language = {en} } @misc{HammerschmidtHerrmannBurgeretal., author = {Hammerschmidt, Martin and Herrmann, Sven and Burger, Sven and Pomplun, Jan and Schmidt, Frank}, title = {Reduced basis method for the optimization of nano-photonic devices}, issn = {1438-0064}, doi = {10.1007/s11082-016-0530-1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57556}, abstract = {Optical 3D simulations in many-query and real-time contexts require new solution strategies. We study an adaptive, error controlled reduced basis method for solving parametrized time-harmonic optical scattering problems. Application fields are, among others, design and optimization problems of nano-optical devices as well as inverse problems for parameter reconstructions occuring e. g. in optical metrology. The reduced basis method presented here relies on a finite element modeling of the scattering problem with parametrization of materials, geometries and sources.}, language = {en} } @misc{HammerschmidtHerrmannPomplunetal., author = {Hammerschmidt, Martin and Herrmann, Sven and Pomplun, Jan and Zschiedrich, Lin and Burger, Sven and Schmidt, Frank}, title = {Reduced basis method for Maxwell's equations with resonance phenomena}, series = {Proc. SPIE}, volume = {9630}, journal = {Proc. SPIE}, issn = {1438-0064}, doi = {10.1117/12.2190425}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55687}, pages = {96300R}, abstract = {Rigorous optical simulations of 3-dimensional nano-photonic structures are an important tool in the analysis and optimization of scattering properties of nano-photonic devices or parameter reconstruction. To construct geometrically accurate models of complex structured nano-photonic devices the finite element method (FEM) is ideally suited due to its flexibility in the geometrical modeling and superior convergence properties. Reduced order models such as the reduced basis method (RBM) allow to construct self-adaptive, error-controlled, very low dimensional approximations for input-output relationships which can be evaluated orders of magnitude faster than the full model. This is advantageous in applications requiring the solution of Maxwell's equations for multiple parameters or a single parameter but in real time. We present a reduced basis method for 3D Maxwell's equations based on the finite element method which allows variations of geometric as well as material and frequency parameters. We demonstrate accuracy and efficiency of the method for a light scattering problem exhibiting a resonance in the electric field.}, language = {en} } @article{HammerschmidtHerrmannPomplunetal., author = {Hammerschmidt, Martin and Herrmann, Sven and Pomplun, Jan and Burger, Sven and Schmidt, Frank}, title = {Reduced basis method for electromagnetic scattering problem: a case study for FinFETs}, series = {Optical and Quantum Electronics}, volume = {48}, journal = {Optical and Quantum Electronics}, doi = {10.1007/s11082-016-0530-1}, pages = {250}, abstract = {Optical 3D simulations in many-query and real-time contexts require new solution strategies. We study an adaptive, error controlled reduced basis method for solving parametrized time-harmonic optical scattering problems. Application fields are, among others, design and optimization problems of nano-optical devices as well as inverse problems for parameter reconstructions occurring e. g. in optical metrology. The reduced basis method pre- sented here relies on a finite element modeling of the scattering problem with parametrization of materials, geometries and sources.}, language = {en} } @article{HammerschmidtBarthPomplunetal., author = {Hammerschmidt, Martin and Barth, Carlo and Pomplun, Jan and Burger, Sven and Becker, Christiane and Schmidt, Frank}, title = {Reconstruction of photonic crystal geometries using a reduced basis method for nonlinear outputs}, series = {Proc. SPIE}, volume = {9756}, journal = {Proc. SPIE}, doi = {10.1117/12.2212482}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-58187}, pages = {97561R}, abstract = {Maxwell solvers based on the hp-adaptive finite element method allow for accurate geometrical modeling and high numerical accuracy. These features are indispensable for the optimization of optical properties or reconstruction of parameters through inverse processes. High computational complexity prohibits the evaluation of the solution for many parameters. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem allowing to compute solutions for a parameter configuration orders of magnitude faster. The RBM allows to evaluate linear and nonlinear outputs of interest like Fourier transform or the enhancement of the electromagnetic field in milliseconds. We apply the RBM to compute light-scattering off two dimensional photonic crystal structures made of silicon and reconstruct geometrical parameters.}, language = {en} }