@misc{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Strong Relaxations for the Train Timetabling Problem using Connected Configurations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64743}, abstract = {The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.}, language = {en} } @inproceedings{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Strong Relaxations for the Train Timetabling Problem using Connected Configurations}, series = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, volume = {59}, booktitle = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, editor = {D'Angelo, Gianlorenzo and Dollevoet, Twan}, isbn = {978-3-95977-042-2}, doi = {10.4230/OASIcs.ATMOS.2017.11}, abstract = {The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.}, language = {en} } @inproceedings{FischerGrimmKlugetal., author = {Fischer, Frank and Grimm, Boris and Klug, Torsten and Schlechte, Thomas}, title = {A Re-optimization Approach for Train Dispatching}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, doi = {10.1007/978-3-319-55702-1_85}, pages = {645 -- 651}, abstract = {The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.}, language = {en} } @article{HeinzeDipankarHenkenetal., author = {Heinze, Rieke and Dipankar, Anurag and Henken, Cintia Carbajal and Moseley, Christopher and Sourdeval, Odran and Tr{\"o}mel, Silke and Xie, Xinxin and Adamidis, Panos and Ament, Felix and Baars, Holger and Barthlott, Christian and Behrendt, Andreas and Blahak, Ulrich and Bley, Sebastian and Brdar, Slavko and Brueck, Matthias and Crewell, Susanne and Deneke, Hartwig and Di Girolamo, Paolo and Evaristo, Raquel and Fischer, J{\"u}rgen and Frank, Christopher and Friederichs, Petra and G{\"o}cke, Tobias and Gorges, Ksenia and Hande, Luke and Hanke, Moritz and Hansen, Akio and Hege, Hans-Christian and Hose, Corinna and Jahns, Thomas and Kalthoff, Norbert and Klocke, Daniel and Kneifel, Stefan and Knippertz, Peter and Kuhn, Alexander and van Laar, Thriza and Macke, Andreas and Maurer, Vera and Mayer, Bernhard and Meyer, Catrin I. and Muppa, Shravan K. and Neggers, Roeland A. J. and Orlandi, Emiliano and Pantillon, Florian and Pospichal, Bernhard and R{\"o}ber, Niklas and Scheck, Leonhard and Seifert, Axel and Seifert, Patric and Senf, Fabian and Siligam, Pavan and Simmer, Clemens and Steinke, Sandra and Stevens, Bjorn and Wapler, Kathrin and Weniger, Michael and Wulfmeyer, Volker and Z{\"a}ngl, G{\"u}nther and Zhang, Dan and Quaas, Johannes}, title = {Large-eddy simulations over Germany using ICON: a comprehensive evaluation}, series = {Quarterly Journal of the Royal Meteorological Society}, volume = {143}, journal = {Quarterly Journal of the Royal Meteorological Society}, number = {702}, doi = {10.1002/qj.2947}, pages = {69 -- 100}, abstract = {Large-eddy simulations (LES) with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small-scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary-layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small- to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small- to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model.}, language = {en} }