@article{SchimunekSeidlElezetal.2023, author = {Schimunek, Johannes and Seidl, Philipp and Elez, Katarina and Hempel, Tim and Le, Tuan and No{\´e}, Frank and Olsson, Simon and Raich, Llu{\´i}s and Winter, Robin and Gokcan, Hatice and Gusev, Filipp and Gutkin, Evgeny M. and Isayev, Olexandr and Kurnikova, Maria G. and Narangoda, Chamali H. and Zubatyuk, Roman and Bosko, Ivan P. and Furs, Konstantin V. and Karpenko, Anna D. and Kornoushenko, Yury V. and Shuldau, Mikita and Yushkevich, Artsemi and Benabderrahmane, Mohammed B. and Bousquet-Melou, Patrick and Bureau, Ronan and Charton, Beatrice and Cirou, Bertrand C. and Gil, G{\´e}rard and Allen, William J. and Sirimulla, Suman and Watowich, Stanley and Antonopoulos, Nick and Epitropakis, Nikolaos and Krasoulis, Agamemnon and Itsikalis, Vassilis and Theodorakis, Stavros and Kozlovskii, Igor and Maliutin, Anton and Medvedev, Alexander and Popov, Petr and Zaretckii, Mark and Eghbal-Zadeh, Hamid and Halmich, Christina and Hochreiter, Sepp and Mayr, Andreas and Ruch, Peter and Widrich, Michael and Berenger, Francois and Kumar, Ashutosh and Yamanishi, Yoshihiro and Zhang, Kam Y. J. and Bengio, Emmanuel and Bengio, Yoshua and Jain, Moksh J. and Korablyov, Maksym and Liu, Cheng-Hao and Marcou, Gilles and Glaab, Enrico and Barnsley, Kelly and Iyengar, Suhasini M. and Ondrechen, Mary Jo and Haupt, V. Joachim and Kaiser, Florian and Schroeder, Michael and Pugliese, Luisa and Albani, Simone and Athanasiou, Christina and Beccari, Andrea and Carloni, Paolo and D'Arrigo, Giulia and Gianquinto, Eleonora and Goßen, Jonas and Hanke, Anton and Joseph, Benjamin P. and Kokh, Daria B. and Kovachka, Sandra and Manelfi, Candida and Mukherjee, Goutam and Mu{\~n}iz-Chicharro, Abraham and Musiani, Francesco and Nunes-Alves, Ariane and Paiardi, Giulia and Rossetti, Giulia and Sadiq, S. Kashif and Spyrakis, Francesca and Talarico, Carmine and Tsengenes, Alexandros and Wade, Rebecca C. and Copeland, Conner and Gaiser, Jeremiah and Olson, Daniel R. and Roy, Amitava and Venkatraman, Vishwesh and Wheeler, Travis J. and Arthanari, Haribabu and Blaschitz, Klara and Cespugli, Marco and Durmaz, Vedat and Fackeldey, Konstantin and Fischer, Patrick D. and Gorgulla, Christoph and Gruber, Christian and Gruber, Karl and Hetmann, Michael and Kinney, Jamie E. and Padmanabha Das, Krishna M. and Pandita, Shreya and Singh, Amit and Steinkellner, Georg and Tesseyre, Guilhem and Wagner, Gerhard and Wang, Zi-Fu and Yust, Ryan J. and Druzhilovskiy, Dmitry S. and Filimonov, Dmitry A. and Pogodin, Pavel V. and Poroikov, Vladimir and Rudik, Anastassia V. and Stolbov, Leonid A. and Veselovsky, Alexander V. and De Rosa, Maria and De Simone, Giada and Gulotta, Maria R. and Lombino, Jessica and Mekni, Nedra and Perricone, Ugo and Casini, Arturo and Embree, Amanda and Gordon, D. Benjamin and Lei, David and Pratt, Katelin and Voigt, Christopher A. and Chen, Kuang-Yu and Jacob, Yves and Krischuns, Tim and Lafaye, Pierre and Zettor, Agn{\`e}s and Rodr{\´i}guez, M. Luis and White, Kris M. and Fearon, Daren and Von Delft, Frank and Walsh, Martin A. and Horvath, Dragos and Brooks III, Charles L. and Falsafi, Babak and Ford, Bryan and Garc{\´i}a-Sastre, Adolfo and Yup Lee, Sang and Naffakh, Nadia and Varnek, Alexandre and Klambauer, G{\"u}nter and Hermans, Thomas M.}, title = {A community effort in SARS-CoV-2 drug discovery}, series = {Molecular Informatics}, volume = {43}, journal = {Molecular Informatics}, number = {1}, doi = {https://doi.org/10.1002/minf.202300262}, pages = {e202300262}, year = {2023}, language = {en} } @misc{FischerCordesSchuette, author = {Fischer, Alexander and Cordes, Frank and Sch{\"u}tte, Christof}, title = {Hybrid Monte Carlo with Adaptive Temperature in a Mixed-Canonical Ensemble: Efficient Conformational Analysis of RNA}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3364}, number = {SC-97-67}, abstract = {A hybrid Monte Carlo method with adaptive temperature choice is presented, which exactly generates the distribution of a mixed-canonical ensemble composed of two canonical ensembles at low and high temperature. The analysis of resulting Markov chains with the reweighting technique shows an efficient sampling of the canonical distribution at low temperature, whereas the high temperature component facilitates conformational transitions, which allows shorter simulation times. \\The algorithm was tested by comparing analytical and numerical results for the small n-butane molecule before simulations were performed for a triribonucleotide. Sampling the complex multi-minima energy landscape of these small RNA segments, we observed enforced crossing of energy barriers.}, language = {en} } @misc{FischerSchuetteDeuflhardetal., author = {Fischer, Alexander and Sch{\"u}tte, Christof and Deuflhard, Peter and Cordes, Frank}, title = {Hierarchical Uncoupling-Coupling of Metastable Conformations}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6296}, number = {01-03}, abstract = {Uncoupling-coupling Monte Carlo (UCMC) combines uncoupling techniques for finite Markov chains with Markov chain Monte Carlo methodology. UCMC aims at avoiding the typical metastable or trapping behavior of Monte Carlo techniques. From the viewpoint of Monte Carlo, a slowly converging long-time Markov chain is replaced by a limited number of rapidly mixing short-time ones. Therefore, the state space of the chain has to be hierarchically decomposed into its metastable conformations. This is done by means of combining the technique of conformation analysis as recently introduced by the authors, and appropriate annealing strategies. We present a detailed examination of the uncoupling-coupling procedure which uncovers its theoretical background, and illustrates the hierarchical algorithmic approach. Furthermore, application of the UCMC algorithm to the \$n\$-pentane molecule allows us to discuss the effect of its crucial steps in a typical molecular scenario.}, language = {en} } @article{FischerCordesSchuette1998, author = {Fischer, Alexander and Cordes, Frank and Sch{\"u}tte, Christof}, title = {Hybrid Monte Carlo with Adaptive Temperature in Mixed-Canonical Ensemble: Efficient conformational analysis of RNA}, series = {J. Comp. Chem.}, volume = {19}, journal = {J. Comp. Chem.}, number = {15}, doi = {10.1002/(SICI)1096-987X(19981130)19:15<1689::AID-JCC2>3.0.CO;2-J}, pages = {1689 -- 1697}, year = {1998}, language = {en} } @inproceedings{FischerSchuetteDeuflhardetal.2002, author = {Fischer, Alexander and Sch{\"u}tte, Christof and Deuflhard, Peter and Cordes, Frank}, title = {Hierarchical Uncoupling-Coupling of Metastable Conformations}, series = {Computational Methods for Macromolecules}, booktitle = {Computational Methods for Macromolecules}, number = {24}, editor = {Schlick, T. and Gan, H.}, publisher = {Springer}, pages = {235 -- 259}, year = {2002}, language = {en} } @misc{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Strong Relaxations for the Train Timetabling Problem using Connected Configurations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64743}, abstract = {The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.}, language = {en} } @inproceedings{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Strong Relaxations for the Train Timetabling Problem using Connected Configurations}, series = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, volume = {59}, booktitle = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, editor = {D'Angelo, Gianlorenzo and Dollevoet, Twan}, isbn = {978-3-95977-042-2}, doi = {10.4230/OASIcs.ATMOS.2017.11}, abstract = {The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.}, language = {en} } @inproceedings{FischerGrimmKlugetal., author = {Fischer, Frank and Grimm, Boris and Klug, Torsten and Schlechte, Thomas}, title = {A Re-optimization Approach for Train Dispatching}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, doi = {10.1007/978-3-319-55702-1_85}, pages = {645 -- 651}, abstract = {The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.}, language = {en} } @inproceedings{FischerSchlechte2015, author = {Fischer, Frank and Schlechte, Thomas}, title = {Comparing two dual relaxations of large scale train timetabling problems}, series = {Proceedings of Conference on Advanced Systems in Public Transport 2015}, booktitle = {Proceedings of Conference on Advanced Systems in Public Transport 2015}, year = {2015}, abstract = {Railway transportation and in particular train timetabling is one of the basic and source application areas of combinatorial optimization and integer programming. We will discuss two well established modeling techniques for the train timetabling problem. In this paper we focus on one major ingredient - the bounding by dual relaxations. We compare two classical dual relaxations of large scale time expanded train timetabling problems - the Lagrangean Dual and Lagrangean Decomposition. We discuss the convergence behavior and show limitations of the Lagrangean Decomposition approach for a configuration based model. We introduce a third dualization approach to overcome those limitations. Finally, we present promising preliminary computational experiments that show that our new approach indeed has superior convergence properties.}, language = {en} } @misc{FischerGrimmKlugetal., author = {Fischer, Frank and Grimm, Boris and Klug, Torsten and Schlechte, Thomas}, title = {A Re-optimization Approach for Train Dispatching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60493}, abstract = {The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.}, language = {en} }