@inproceedings{Hennings, author = {Hennings, Felix}, title = {Benefits and Limitations of Simplified Transient Gas Flow Formulations}, series = {Operations Research Proceedings 2017}, volume = {Operations Research Proceedings}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer, Cham}, doi = {10.1007/978-3-319-89920-6_32}, pages = {231 -- 237}, abstract = {Although intensively studied in recent years, the optimization of the transient (time-dependent) control of large real-world gas networks is still out of reach for current state-of-the-art approaches. For this reason, we present further simplifications of the commonly used model, which lead to a linear description of the gas flow on pipelines. In an empirical analysis of real-world data, we investigate the properties of the involved quantities and evaluate the errors made by our simplification.}, language = {en} } @article{HoppmannBaumHenningsZitteletal., author = {Hoppmann-Baum, Kai and Hennings, Felix and Zittel, Janina and Gotzes, Uwe and Spreckelsen, Eva-Maria and Spreckelsen, Klaus and Koch, Thorsten}, title = {An Optimization Approach for the Transient Control of Hydrogen Transport Networks}, series = {Mathematical Methods of Operations Research}, journal = {Mathematical Methods of Operations Research}, number = {Special Issue on Energy Networks}, language = {en} } @article{HoppmannBaumHenningsLenzetal.2020, author = {Hoppmann-Baum, Kai and Hennings, Felix and Lenz, Ralf and Gotzes, Uwe and Heinecke, Nina and Spreckelsen, Klaus and Koch, Thorsten}, title = {Optimal Operation of Transient Gas Transport Networks}, series = {Optimization and Engineering}, volume = {22}, journal = {Optimization and Engineering}, doi = {10.1007/s11081-020-09584-x}, pages = {735 -- 781}, year = {2020}, abstract = {In this paper, we describe an algorithmic framework for the optimal operation of transient gas transport networks consisting of a hierarchical MILP formulation together with a sequential linear programming inspired post-processing routine. Its implementation is part of the KOMPASS decision support system, which is currently used in an industrial setting. Real-world gas transport networks are controlled by operating complex pipeline intersection areas, which comprise multiple compressor units, regulators, and valves. In the following, we introduce the concept of network stations to model them. Thereby, we represent the technical capabilities of a station by hand-tailored artificial arcs and add them to network. Furthermore, we choose from a predefined set of flow directions for each network station and time step, which determines where the gas enters and leaves the station. Additionally, we have to select a supported simple state, which consists of two subsets of artificial arcs: Arcs that must and arcs that cannot be used. The goal is to determine a stable control of the network satisfying all supplies and demands. The pipeline intersections, that are represented by the network stations, were initially built centuries ago. Subsequently, due to updates, changes, and extensions, they evolved into highly complex and involved topologies. To extract their basic properties and to model them using computer-readable and optimizable descriptions took several years of effort. To support the dispatchers in controlling the network, we need to compute a continuously updated list of recommended measures. Our motivation for the model presented here is to make fast decisions on important transient global control parameters, i.e., how to route the flow and where to compress the gas. Detailed continuous and discrete technical control measures realizing them, which take all hardware details into account, are determined in a subsequent step. In this paper, we present computational results from the KOMPASS project using detailed real-world data.}, language = {en} } @article{Hennings, author = {Hennings, Felix}, title = {Large-scale empirical study on the momentum equation's inertia term}, series = {Journal of Natural Gas Science and Engineering}, volume = {95}, journal = {Journal of Natural Gas Science and Engineering}, publisher = {Elsevier}, doi = {10.1016/j.jngse.2021.104153}, abstract = {A common approach to reduce the Euler equations' complexity for the simulation and optimization of gas networks is to neglect small terms that contribute little to the overall equations. An example is the inertia term of the momentum equation, which is said to be of negligible size under real-world operating conditions. However, this justification has always only been based on experience or single sets of artificial data points. This study closes this gap by presenting a large-scale empirical evaluation of the absolute and relative size of the inertia term when operating a real-world gas network. Our data consists of three years of fine-granular state data of one of the largest gas networks in Europe, featuring over 6,000 pipes with a total length of over 10,000 km. We found that there are only 120 events in which a subnetwork consisting of multiple pipes has an inertia term of high significance for more than three minutes. On average, such an event occurs less often than once every ten days. Therefore, we conclude that the inertia term is indeed negligible for real-world transient gas network control problems.}, language = {en} } @article{HenningsAndersonHoppmannBaumetal., author = {Hennings, Felix and Anderson, Lovis and Hoppmann-Baum, Kai and Turner, Mark and Koch, Thorsten}, title = {Controlling transient gas flow in real-world pipeline intersection areas}, series = {Optimization and Engineering}, volume = {22}, journal = {Optimization and Engineering}, edition = {2}, publisher = {Springer Nature}, doi = {https://doi.org/10.1007/s11081-020-09559-y}, pages = {687 -- 734}, abstract = {Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach.}, language = {en} } @phdthesis{Hennings, author = {Hennings, Felix}, title = {Modeling and solving real-world transient gas network transport problems using mathematical programming}, abstract = {This thesis considers the transient gas network control optimization problem for on-shore pipeline-based transmission networks with numerous gas routing options. As input, the problem is given the network's topology, its initial state, and future demands at the boundaries of the network, which prescribe the gas flow exchange and potentially the pressure values. The task is to find a set of future control measures for all the active, i.e., controllable, elements in the network that minimizes a combination of different penalty functions. The problem is examined in the context of a decision support tool for gas network dispatchers. This results in detailed models featuring a diverse set of constraints, large and challenging real-world instances, and demanding time limit requirements. All these factors further complicate the problem, which is already difficult to solve in theory due to the inherent combination of non-linear and combinatorial aspects. Our contributions concern different steps of the process of solving the problem. Regarding the model formulation, we investigate the validity of two common approximations of the gas flow description in transport pipes: neglecting the inertia term and assuming a friction term that linearly depends on the gas flow and the pressure. For both, we examine if they can be applied under real-world conditions by evaluating a large amount of historical state data of the network of our project partner, the gas network operator Open Grid Europe. While we can confirm that it is reasonable to ignore the influence of the inertia term, the friction term linearization leads to significant errors and, as a consequence, cannot be used for describing the general gas flow behavior in transport pipes. As another topic of this thesis, we introduce the target value concept as a more realistic approach to express control actions of dispatchers regarding regulators and compressor stations. Here, we derive the mechanisms defined for target values based on the gas flow principles in pipes and develop a mixed-integer programming model capturing their behavior. The accuracy of this model is demonstrated in comparison to a target-value-based industry-standard simulator. Furthermore, we present two heuristics for the transient gas network control optimization problem featuring target values that are based on approximative models for the target-value-based control and determine the final decisions in a post-processing step. To compare the performance of the two heuristics with the approach of directly solving the corresponding model, we evaluate them on a set of artificially created test instances. Finally, we develop problem-specific algorithms for two variants of the described problem. One considers the control optimization for a single network station, which represents a local operation site featuring a large number of active elements. The used transient model is very detailed and includes a sophisticated representation of the compressor stations. Based on the shortness of the pipes in the station, the corresponding algorithm finds valid solutions by solving a series of stationary model variants as well as a transient rolling horizon approach. As the second variant, we consider the problem on the entire network but assume an approximative model representing the control capabilities of network stations. Aside from a new description of the compression capabilities, we introduce an algorithm that uses a combination of sequential mixed-integer programming, two heuristics based on reduced time horizons, and a specialized dynamic branch-and-bound node limit to determine promising values for the binary variables of the model. Complete solutions for the problem are obtained by fixing the binary values and solving the remaining non-linear program. Both algorithms are investigated in extensive empirical studies based on real-world instances of the corresponding model variants.}, language = {en} } @article{HenningsPetkovicStreubel, author = {Hennings, Felix and Petkovic, Milena and Streubel, Tom}, title = {On the Numerical Treatment of Interlaced Target Values - Modeling, Optimization and Simulation of Regulating Valves in Gas Networks}, series = {Optimization and Engineering}, journal = {Optimization and Engineering}, publisher = {Springer Nature}, doi = {10.1007/s11081-023-09812-0}, abstract = {Due to the current and foreseeable shifts towards carbon dioxide neutral energy production, which will likely result in balancing fluctuating renewable energy generation by transforming power-to-gas-to-power as well as building a large-scale hydrogen transport infrastructure, the trading and transport operations of gas will become more dynamic, volatile, and hence also less predictable. Therefore, computer-aided support in terms of rapid simulation and control optimization will further broaden its importance for gas network dispatching. In this paper, we aim to contribute and openly publish two new mathematical models for regulators, also referred to as control valves, which together with compressors make up the most complex and involved types of active elements in gas network infrastructures. They provide direct control over gas networks but are in turn controlled via target values, also known as set-point values, themselves. Our models incorporate up to six dynamical target values to define desired transient states for the elements' local vicinity within the network. That is, each pair of every two target values defines a bounding box for the inlet pressure, outlet pressure as well as the passing mass flow of gas. In the proposed models, those target values are prioritized differently and are constantly in competition with each other, which can only be resolved dynamically at run-time of either a simulation or optimization process. Besides careful derivation, we compare simulation and optimization results with predictions of the widely adopted commercial simulation tool SIMONE, serving as our substitute for actual real-world transport operations.}, language = {en} } @article{HenningsHoppmannBaumZittel, author = {Hennings, Felix and Hoppmann-Baum, Kai and Zittel, Janina}, title = {Optimizing transient gas network control for challenging real-world instances using MIP-based heuristics}, series = {Open Journal of Mathematical Optimization}, journal = {Open Journal of Mathematical Optimization}, language = {en} }