@misc{NavaYazdaniHanikAmbellanetal., author = {Nava-Yazdani, Esfandiar and Hanik, Martin and Ambellan, Felix and von Tycowicz, Christoph}, title = {On Gradient Formulas in an Algorithm for the Logarithm of the Sasaki Metric}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-87174}, abstract = {The Sasaki metric is the canonical metric on the tangent bundle TM of a Riemannian manifold M. It is highly useful for data analysis in TM (e.g., when one is interested in the statistics of a set of geodesics in M). To this end, computing the Riemannian logarithm is often necessary, and an iterative algorithm was proposed by Muralidharan and Fletcher. In this note, we derive approximation formulas of the energy gradients in their algorithm that we use with success.}, language = {en} } @article{NavayazdaniAmbellanHaniketal., author = {Navayazdani, Esfandiar and Ambellan, Felix and Hanik, Martin and von Tycowicz, Christoph}, title = {Sasaki Metric for Spline Models of Manifold-Valued Trajectories}, series = {Computer Aided Geometric Design}, volume = {104}, journal = {Computer Aided Geometric Design}, doi = {10.1016/j.cagd.2023.102220}, pages = {102220}, abstract = {We propose a generic spatiotemporal framework to analyze manifold-valued measurements, which allows for employing an intrinsic and computationally efficient Riemannian hierarchical model. Particularly, utilizing regression, we represent discrete trajectories in a Riemannian manifold by composite B{\´e}zier splines, propose a natural metric induced by the Sasaki metric to compare the trajectories, and estimate average trajectories as group-wise trends. We evaluate our framework in comparison to state-of-the-art methods within qualitative and quantitative experiments on hurricane tracks. Notably, our results demonstrate the superiority of spline-based approaches for an intensity classification of the tracks.}, language = {en} } @article{KoflerWaldKolbitschetal., author = {Kofler, Andreas and Wald, Christian and Kolbitsch, Christoph and von Tycowicz, Christoph and Ambellan, Felix}, title = {Joint Reconstruction and Segmentation in Undersampled 3D Knee MRI combining Shape Knowledge and Deep Learning}, series = {Physics in Medicine and Biology}, journal = {Physics in Medicine and Biology}, doi = {10.1088/1361-6560/ad3797}, abstract = {Task-adapted image reconstruction methods using end-to-end trainable neural networks (NNs) have been proposed to optimize reconstruction for subsequent processing tasks, such as segmentation. However, their training typically requires considerable hardware resources and thus, only relatively simple building blocks, e.g. U-Nets, are typically used, which, albeit powerful, do not integrate model-specific knowledge. In this work, we extend an end-to-end trainable task-adapted image reconstruction method for a clinically realistic reconstruction and segmentation problem of bone and cartilage in 3D knee MRI by incorporating statistical shape models (SSMs). The SSMs model the prior information and help to regularize the segmentation maps as a final post-processing step. We compare the proposed method to a state-of-the-art (SOTA) simultaneous multitask learning approach for image reconstruction and segmentation (MTL) and to a complex SSMs-informed segmentation pipeline (SIS). Our experiments show that the combination of joint end-to-end training and SSMs to further regularize the segmentation maps obtained by MTL highly improves the results, especially in terms of mean and maximal surface errors. In particular, we achieve the segmentation quality of SIS and, at the same time, a substantial model reduction that yields a five-fold decimation in model parameters and a computational speedup of an order of magnitude. Remarkably, even for undersampling factors of up to R=8, the obtained segmentation maps are of comparable quality to those obtained by SIS from ground-truth images.}, language = {en} }