@misc{BorndoerferHoppmannKarbsteinetal., author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika and L{\"o}bel, Fabian}, title = {The Modulo Network Simplex with Integrated Passenger Routing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60319}, abstract = {Periodic timetabling is an important strategic planning problem in public transport. The task is to determine periodic arrival and departure times of the lines in a given network, minimizing the travel time of the passengers. We extend the modulo network simplex method, a well-established heuristic for the periodic timetabling problem, by integrating a passenger (re)routing step into the pivot operations. Computations on real-world networks show that we can indeed find timetables with much shorter total travel time, when we take the passengers' travel paths into consideration.}, language = {en} } @masterthesis{Loebel, type = {Bachelor Thesis}, author = {L{\"o}bel, Fabian}, title = {Solving Integrated Timetabling and Passenger Routing Problems Using the Modulo Network Simplex Algorithm}, abstract = {Common models and solving approaches for the problem of periodic timetabling, that is, determining periodic arrival and departure times of a given public transportation network's lines so that the total weighted travel time of all passengers is minimized, fail to take passenger behavior into account. Current research is attempting to resolve this issue and first results show a positive impact on solution quality. This thesis aims to give a brief overview of literature on the topic of timetabling and to then state a heuristic approach to Integrated Timetabling by blending passenger behavior into the Modulo Network Simplex algorithm, which is part of the research carried out by the author's study group at the Zuse Institut Berlin in the framework of MATHEON's research project MI-3 supported by the Einstein Foundation Berlin.}, language = {en} } @misc{Loebel, type = {Master Thesis}, author = {L{\"o}bel, Fabian}, title = {Implementing the Network Simplex for Hypergraphs}, abstract = {The well-known network simplex algorithm is a powerful tool to solve flow problems on graphs. Based on a recent dissertation by Isabel Beckenbach, we develop the necessary theory to extend the network simplex to capacitated flow problems on hypergraphs and implement this new variant. We then attempt to solve instances arising from real-life vehicle rotation planning problems.}, language = {en} } @misc{LoebelLindnerBorndoerfer, author = {L{\"o}bel, Fabian and Lindner, Niels and Bornd{\"o}rfer, Ralf}, title = {The Restricted Modulo Network Simplex Method for Integrated Periodic Timetabling and Passenger Routing}, issn = {1438-0064}, doi = {https://doi.org/https://doi.org/10.1007/978-3-030-48439-2_92}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73868}, abstract = {The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances.}, language = {en} } @inproceedings{BorndoerferHoppmannKarbsteinetal., author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika and L{\"o}bel, Fabian}, title = {The Modulo Network Simplex with Integrated Passenger Routing}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, abstract = {Periodic timetabling is an important strategic planning problem in public transport. The task is to determine periodic arrival and departure times of the lines in a given network, minimizing the travel time of the passengers. We extend the modulo network simplex method, a well-established heuristic for the periodic timetabling problem, by integrating a passenger (re)routing step into the pivot operations. Computations on real-world networks show that we can indeed find timetables with much shorter total travel time, when we take the passengers' travel paths into consideration.}, language = {en} }