@misc{StallingZoecklerSanderetal., author = {Stalling, Detlev and Z{\"o}ckler, Malte and Sander, Oliver and Hege, Hans-Christian}, title = {Weighted Labels for 3D Image Segmentation}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3828}, number = {SC-98-39}, abstract = {Segmentation tools in medical imaging are either based on editing geometric curves or on the assignment of region labels to image voxels. While the first approach is well suited to describe smooth contours at subvoxel accuracy, the second approach is conceptually more simple and guarantees a unique classification of image areas. However, contours extracted from labeled images typically exhibit strong staircase artifacts and are not well suited to represent smooth tissue boundaries. In this paper we describe how this drawback can be circumvented by supplementing region labels with additional weights. We integrated our approach into an interactive segmentation system providing a well-defined set of manual and semi-automatic editing tools. All tools update both region labels as well as the corresponding weights simultaneously, thus allowing one to define segmentation results at high resolution. We applied our techniques to generate 3D polygonal models of anatomical structures.}, language = {en} } @misc{ZoecklerStallingHege, author = {Z{\"o}ckler, Malte and Stalling, Detlev and Hege, Hans-Christian}, title = {Fast and Intuitive Generation of Geometric Shape Transitions}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4219}, number = {SC-99-33}, abstract = {We describe a novel method for continuously transforming two triangulated models of arbitrary topology into each other. Equal global topology for both objects is assumed, extensions for genus changes during metamorphosis are provided. The proposed method addresses the major challenge in 3D metamorphosis, namely specifying the morphing process intuitively, with minimal user interaction and sufficient detail. Corresponding regions and point features are interactively identified. These regions are parametrized automatically and consistently, providing a basis for smooth interpolation. Utilizing suitable 3D interaction techniques a simple and intuitive control over the whole morphing process is offered.}, language = {en} } @misc{StallingSeebassZoeckleretal., author = {Stalling, Detlev and Seebass, Martin and Z{\"o}ckler, Malte and Hege, Hans-Christian}, title = {Hyperthermia Treatment Planning with HyperPlan - User's Manual}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5957}, number = {00-27}, abstract = {HyperPlan is a software system for performing 3D-simulations and treatment planning in regional hyperthermia. It allows the user to understand the complex effects of electromagnetic wave propagation and heat transport inside a patient's body. Optimized power amplitudes and phase settings can be calculated for the BSD radiowave applicators Sigma 60 and Sigma 2000 (eye-applicator). HyperPlan is built on top of the modular, object-oriented visualization system Amira. This system already contains powerful algorithms for image processing, geometric modelling and 3D graphics display. HyperPlan provides a number of hyperthermia-specific modules, allowing the user to create 3D tetrahedral patient models suitable for treatment planning. In addition, all numerical simulation modules required for hyperthermia simulation are part of HyperPlan. This guide provides a step-by-step introduction to hyperthermia planning using HyperPlan. It also describes the usage of the underlying visualization system Amira.}, language = {en} } @misc{ZoecklerReinBrandtetal., author = {Z{\"o}ckler, Malte and Rein, Karlheinz and Brandt, Robert and Stalling, Detlev and Hege, Hans-Christian}, title = {Creating Virtual Insect Brains with Amira}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6589}, number = {01-32}, abstract = {By combining techniques of preparation, histology, confocal microscopy, data visualization and data processing, we have created and recently published a standard brain model for drosophila and honey bee brains. This report describes the algorithms and implementation of the corresponding software modules. At the same time it serves as a user's guide for scientist who want to reproduce the results for differerent species or mutants.}, language = {en} }