@article{BestuzhevaBesanconChenetal., author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {Enabling research through the SCIP optimization suite 8.0}, series = {ACM Transactions on Mathematical Software}, volume = {49}, journal = {ACM Transactions on Mathematical Software}, number = {2}, doi = {10.1145/3585516}, pages = {1 -- 21}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. The focus of this article is on the role of the SCIP Optimization Suite in supporting research. SCIP's main design principles are discussed, followed by a presentation of the latest performance improvements and developments in version 8.0, which serve both as examples of SCIP's application as a research tool and as a platform for further developments. Furthermore, this article gives an overview of interfaces to other programming and modeling languages, new features that expand the possibilities for user interaction with the framework, and the latest developments in several extensions built upon SCIP.}, language = {en} } @article{BreuerBussieckFiandetal., author = {Breuer, Thomas and Bussieck, Michael and Fiand, Frederik and Cao, Karl-Ki{\^e}n and Gils, Hans Christian and Wetzel, Manuel and Gleixner, Ambros and Koch, Thorsten and Rehfeldt, Daniel and Khabi, Dmitry}, title = {BEAM-ME: Ein interdisziplin{\"a}rer Beitrag zur Erreichung der Klimaziele}, series = {OR-News : das Magazin der GOR}, journal = {OR-News : das Magazin der GOR}, number = {66}, pages = {6 -- 8}, language = {de} } @article{GamrathKochMaheretal., author = {Gamrath, Gerald and Koch, Thorsten and Maher, Stephen J. and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A solver for STP and variants with parallelization extensions}, series = {Mathematical Programming Computation}, volume = {9}, journal = {Mathematical Programming Computation}, number = {2}, doi = {10.1007/s12532-016-0114-x}, pages = {231 -- 296}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.}, language = {en} } @article{PedersenWeinandSyranidouetal., author = {Pedersen, Jaap and Weinand, Jann Michael and Syranidou, Chloi and Rehfeldt, Daniel}, title = {An efficient solver for large-scale onshore wind farm siting including cable routing}, series = {European Journal of Operational Research}, volume = {317}, journal = {European Journal of Operational Research}, number = {2}, doi = {10.1016/j.ejor.2024.04.026}, pages = {616 -- 630}, abstract = {Existing planning approaches for onshore wind farm siting and grid integration often do not meet minimum cost solutions or social and environmental considerations. In this paper, we develop an exact approach for the integrated layout and cable routing problem of onshore wind farm planning using the Quota Steiner tree problem. Applying a novel transformation on a known directed cut formulation, reduction techniques, and heuristics, we design an exact solver that makes large problem instances solvable and outperforms generic MIP solvers. In selected regions of Germany, the trade-offs between minimizing costs and landscape impact of onshore wind farm siting are investigated. Although our case studies show large trade-offs between the objective criteria of cost and landscape impact, small burdens on one criterion can significantly improve the other criteria. In addition, we demonstrate that contrary to many approaches for exclusive turbine siting, grid integration must be simultaneously optimized to avoid excessive costs or landscape impacts in the course of a wind farm project. Our novel problem formulation and the developed solver can assist planners in decision-making and help optimize wind farms in large regions in the future.}, language = {en} } @article{Rehfeldt, author = {Rehfeldt, Daniel}, title = {Faster Algorithms for Steiner Tree and related Problems: From Theory to Practice}, series = {OR News: Das Magazin der GOR}, journal = {OR News: Das Magazin der GOR}, language = {en} } @article{RehfeldtFranzKoch, author = {Rehfeldt, Daniel and Franz, Henriette and Koch, Thorsten}, title = {Optimal Connected Subgraphs: Integer Programming Formulations and Polyhedra}, series = {Networks}, volume = {80}, journal = {Networks}, number = {3}, publisher = {Wiley}, doi = {10.1002/net.22101}, pages = {314 -- 332}, language = {en} } @article{RehfeldtHobbieSchoenheitetal., author = {Rehfeldt, Daniel and Hobbie, Hannes and Sch{\"o}nheit, David and Koch, Thorsten and M{\"o}st, Dominik and Gleixner, Ambros}, title = {A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models}, series = {European Journal of Operational Research}, volume = {296}, journal = {European Journal of Operational Research}, number = {1}, doi = {10.1016/j.ejor.2021.06.063}, pages = {60 -- 71}, abstract = {Linear energy system models are a crucial component of energy system design and operations, as well as energy policy consulting. If detailed enough, such models lead to large-scale linear programs, which can be intractable even for the best state-of-the-art solvers. This article introduces an interior-point solver that exploits common structures of energy system models to efficiently run in parallel on distributed-memory systems. The solver is designed for linear programs with doubly-bordered block-diagonal constraint matrix and makes use of a Schur complement based decomposition. In order to handle the large number of linking constraints and variables commonly observed in energy system models, a distributed Schur complement preconditioner is used. In addition, the solver features a number of more generic techniques such as parallel matrix scaling and structure-preserving presolving. The implementation is based on the solver PIPS-IPM. We evaluate the computational performance on energy system models with up to four billion nonzero entries in the constraint matrix—and up to one billion columns and one billion rows. This article mainly concentrates on the energy system model ELMOD, which is a linear optimization model representing the European electricity markets by the use of a nodal pricing market-clearing. It has been widely applied in the literature on energy system analyses in recent years. However, it will be demonstrated that the new solver is also applicable to other energy system models.}, language = {en} } @article{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Transformations for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem to SAP}, series = {Journal of Computational Mathematics}, volume = {36}, journal = {Journal of Computational Mathematics}, number = {3}, doi = {10.4208/jcm.1709-m2017-0002}, pages = {459 -- 468}, abstract = {Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds.}, language = {en} } @article{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {On the exact solution of prize-collecting Steiner tree problems}, series = {INFORMS Journal on Computing}, journal = {INFORMS Journal on Computing}, doi = {10.1287/ijoc.2021.1087}, language = {en} } @article{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Combining NP-Hard Reduction Techniques and Strong Heuristics in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem}, series = {SIAM Journal on Optimization}, volume = {29}, journal = {SIAM Journal on Optimization}, number = {1}, publisher = {Society for Industrial and Applied Mathematics}, doi = {10.1137/17M1145963}, pages = {369 -- 398}, abstract = {Borne out of a surprising variety of practical applications, the maximum-weight connected subgraph problem has attracted considerable interest during the past years. This interest has not only led to notable research on theoretical properties, but has also brought about several (exact) solvers-with steadily increasing performance. Continuing along this path, the following article introduces several new algorithms such as reduction techniques and heuristics and describes their integration into an exact solver. The new methods are evaluated with respect to both their theoretical and practical properties. Notably, the new exact framework allows to solve common problem instances from the literature faster than all previous approaches. Moreover, one large-scale benchmark instance from the 11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual gap for two other ones can be significantly reduced.}, language = {en} }