@article{ThiesSunkaraRayetal.2023, author = {Thies, Arne and Sunkara, Vikram and Ray, Sourav and Wulkow, Hanna and Celik, M. {\"O}zg{\"u}r and Yerg{\"o}z, Fatih and Sch{\"u}tte, Christof and Stein, Christoph and Weber, Marcus and Winkelmann, Stefanie}, title = {Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design}, volume = {13}, journal = {Scientific Reports}, number = {607}, doi = {10.1038/s41598-023-27699-w}, year = {2023}, abstract = {We previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. The design process of NFEPP was based on mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands, recognizing that GPCRs function differently under pathological versus healthy conditions. We now present an additional and novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels and their dependence on parameters of inflamed and healthy tissue (pH, radicals). The model is validated against in vitro experimental data for the ligands NFEPP and fentanyl at different pH values and radical concentrations. We observe markedly reduced binding affinity and calcium channel inhibition for NFEPP at normal pH compared to lower pH, in contrast to the effect of fentanyl. For increasing radical concentrations, we find enhanced constitutive G-protein activation but reduced ligand binding affinity. Assessing the different effects, the results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.}, language = {en} } @misc{RayThiesSunkaraetal.2021, author = {Ray, Sourav and Thies, Arne and Sunkara, Vikram and Wulkow, Hanna and Celik, {\"O}zg{\"u}r and Yerg{\"o}z, Fatih and Sch{\"u}tte, Christof and Stein, Christoph and Weber, Marcus and Winkelmann, Stefanie}, title = {Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82797}, year = {2021}, abstract = {Initiated by mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands in normal versus diseased (inflamed) environments, we previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. Uniquely, this design recognised that GPCRs function differently under pathological versus healthy conditions. We now present a novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels associated with parameters of inflamed tissue (pH, radicals). By means of molecular dynamics simulations, we also assessed qualitative changes of the reaction rates due to additional disulfide bridges inside the GPCR binding pocket and used these rates for stochastic simulations of the corresponding reaction jump process. The modelling results were validated with in vitro experiments measuring calcium currents and G-protein activation. We found markedly reduced G-protein dissociation and calcium channel inhibition induced by NFEPP at normal pH, and enhanced constitutive G-protein activation but lower probability of ligand binding with increasing radical concentrations. These results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.}, language = {en} } @article{MontefuscoSchuetteWinkelmann2023, author = {Montefusco, Alberto and Sch{\"u}tte, Christof and Winkelmann, Stefanie}, title = {A route to the hydrodynamic limit of a reaction-diffusion master equation using gradient structures}, volume = {83}, journal = {SIAM Journal on Applied Mathematics}, number = {2}, arxiv = {http://arxiv.org/abs/2201.02613}, doi = {10.1137/22M1488831}, pages = {837 -- 861}, year = {2023}, abstract = {The reaction-diffusion master equation (RDME) is a lattice-based stochastic model for spatially resolved cellular processes. It is often interpreted as an approximation to spatially continuous reaction-diffusion models, which, in the limit of an infinitely large population, may be described by means of reaction-diffusion partial differential equations. Analyzing and understanding the relation between different mathematical models for reaction-diffusion dynamics is a research topic of steady interest. In this work, we explore a route to the hydrodynamic limit of the RDME which uses gradient structures. Specifically, we elaborate on a method introduced in [J. Maas and A. Mielke, J. Stat. Phys., 181 (2020), pp. 2257-2303] in the context of well-mixed reaction networks by showing that, once it is complemented with an appropriate limit procedure, it can be applied to spatially extended systems with diffusion. Under the assumption of detailed balance, we write down a gradient structure for the RDME and use the method in order to produce a gradient structure for its hydrodynamic limit, namely, for the corresponding RDPDE.}, language = {en} } @article{PeppertvonKleistSchuetteetal.2022, author = {Peppert, Felix and von Kleist, Max and Sch{\"u}tte, Christof and Sunkara, Vikram}, title = {On the Sufficient Condition for Solving the Gap-Filling Problem Using Deep Convolutional Neural Networks}, volume = {33}, journal = {IEEE Transactions on Neural Networks and Learning Systems}, number = {11}, doi = {10.1109/TNNLS.2021.3072746}, pages = {6194 -- 6205}, year = {2022}, abstract = {Deep convolutional neural networks (DCNNs) are routinely used for image segmentation of biomedical data sets to obtain quantitative measurements of cellular structures like tissues. These cellular structures often contain gaps in their boundaries, leading to poor segmentation performance when using DCNNs like the U-Net. The gaps can usually be corrected by post-hoc computer vision (CV) steps, which are specific to the data set and require a disproportionate amount of work. As DCNNs are Universal Function Approximators, it is conceivable that the corrections should be obsolete by selecting the appropriate architecture for the DCNN. In this article, we present a novel theoretical framework for the gap-filling problem in DCNNs that allows the selection of architecture to circumvent the CV steps. Combining information-theoretic measures of the data set with a fundamental property of DCNNs, the size of their receptive field, allows us to formulate statements about the solvability of the gap-filling problem independent of the specifics of model training. In particular, we obtain mathematical proof showing that the maximum proficiency of filling a gap by a DCNN is achieved if its receptive field is larger than the gap length. We then demonstrate the consequence of this result using numerical experiments on a synthetic and real data set and compare the gap-filling ability of the ubiquitous U-Net architecture with variable depths. Our code is available at https://github.com/ai-biology/dcnn-gap-filling.}, language = {en} } @article{BittracherMollenhauerKoltaietal.2023, author = {Bittracher, Andreas and Mollenhauer, Mattes and Koltai, P{\´e}ter and Sch{\"u}tte, Christof}, title = {Optimal Reaction Coordinates: Variational Characterization and Sparse Computation}, volume = {21}, journal = {Multiscale Modelling \& Simulation}, number = {2}, arxiv = {http://arxiv.org/abs/2107.10158}, doi = {10.1137/21M1448367}, pages = {449 -- 488}, year = {2023}, abstract = {Reaction coordinates (RCs) are indicators of hidden, low-dimensional mechanisms that govern the long-term behavior of high-dimensional stochastic processes. We present a novel and general variational characterization of optimal RCs and provide conditions for their existence. Optimal RCs are minimizers of a certain loss function, and reduced models based on them guarantee a good approximation of the statistical long-term properties of the original high-dimensional process. We show that for slow-fast systems, metastable systems, and other systems with known good RCs, the novel theory reproduces previous insight. Remarkably, for reversible systems, the numerical effort required to evaluate the loss function scales only with the variability of the underlying, low-dimensional mechanism, and not with that of the full system. The theory provided lays the foundation for an efficient and data-sparse computation of RCs via modern machine learning techniques.}, language = {en} } @article{MollenhauerKlusSchuetteetal.2022, author = {Mollenhauer, Mattes and Klus, Stefan and Sch{\"u}tte, Christof and Koltai, P{\´e}ter}, title = {Kernel Autocovariance Operators of Stationary Processes: Estimation and Convergence}, volume = {23}, journal = {Journal of Machine Learning Research}, number = {327}, arxiv = {http://arxiv.org/abs/2004.00891}, pages = {1 -- 34}, year = {2022}, abstract = {We consider autocovariance operators of a stationary stochastic process on a Polish space that is embedded into a reproducing kernel Hilbert space. We investigate how empirical estimates of these operators converge along realizations of the process under various conditions. In particular, we examine ergodic and strongly mixing processes and obtain several asymptotic results as well as finite sample error bounds. We provide applications of our theory in terms of consistency results for kernel PCA with dependent data and the conditional mean embedding of transition probabilities. Finally, we use our approach to examine the nonparametric estimation of Markov transition operators and highlight how our theory can give a consistency analysis for a large family of spectral analysis methods including kernel-based dynamic mode decomposition.}, language = {en} } @misc{HelfmannDjurdjevacConradLorenzSpreenetal.2023, author = {Helfmann, Luzie and Djurdjevac Conrad, Natasa and Lorenz-Spreen, Philipp and Sch{\"u}tte, Christof}, title = {Supplementary code for the paper Modelling opinion dynamics under the impact of influencer and media strategies}, doi = {10.12752/9267}, year = {2023}, abstract = {This repository contains the Julia code accompanying the paper "Modelling opinion dynamics under the impact of influencer and media strategies", Scientific Reports, Vol.13, p. 19375, 2023.}, language = {en} } @article{WehlitzSadeghiMontefuscoetal.2025, author = {Wehlitz, Nathalie and Sadeghi, Mohsen and Montefusco, Alberto and Sch{\"u}tte, Christof and Pavliotis, Grigorios A. and Winkelmann, Stefanie}, title = {Approximating particle-based clustering dynamics by stochastic PDEs}, volume = {24}, journal = {SIAM Journal on Applied Dynamical Systems}, number = {2}, arxiv = {http://arxiv.org/abs/2407.18952}, doi = {10.1137/24M1676661}, pages = {1231 -- 1250}, year = {2025}, abstract = {This work proposes stochastic partial differential equations (SPDEs) as a practical tool to replicate clustering effects of more detailed particle-based dynamics. Inspired by membrane mediated receptor dynamics on cell surfaces, we formulate a stochastic particle-based model for diffusion and pairwise interaction of particles, leading to intriguing clustering phenomena. Employing numerical simulation and cluster detection methods, we explore the approximation of the particle-based clustering dynamics through mean-field approaches. We find that SPDEs successfully reproduce spatiotemporal clustering dynamics, not only in the initial cluster formation period, but also on longer time scales where the successive merging of clusters cannot be tracked by deterministic mean-field models. The computational efficiency of the SPDE approach allows us to generate extensive statistical data for parameter estimation in a simpler model that uses a Markov jump process to capture the temporal evolution of the cluster number.}, language = {en} } @article{KostreDjurdjevacConradSchuetteetal.2024, author = {Kostr{\´e}, Margarita and Djurdjevac Conrad, Natasa and Sch{\"u}tte, Christof and Sunkara, Vikram}, title = {Exploration of Particle Swarm Optimisation Algorithm with Divergent Parameters}, journal = {Natural Computing}, year = {2024}, language = {en} } @article{RegenyiMashreghiSchuetteetal.2024, author = {Reg{\´e}nyi, Enikő and Mashreghi, Mir-Farzin and Sch{\"u}tte, Christof and Sunkara, Vikram}, title = {Exploring transcription modalities from bimodal, single-cell RNA sequencing data}, volume = {6}, journal = {NAR Genomics and Bioinformatics}, number = {4}, publisher = {Oxford University Press (OUP)}, issn = {2631-9268}, doi = {10.1093/nargab/lqae179}, year = {2024}, abstract = {Abstract There is a growing interest in generating bimodal, single-cell RNA sequencing (RNA-seq) data for studying biological pathways. These data are predominantly utilized in understanding phenotypic trajectories using RNA velocities; however, the shape information encoded in the two-dimensional resolution of such data is not yet exploited. In this paper, we present an elliptical parametrization of two-dimensional RNA-seq data, from which we derived statistics that reveal four different modalities. These modalities can be interpreted as manifestations of the changes in the rates of splicing, transcription or degradation. We performed our analysis on a cell cycle and a colorectal cancer dataset. In both datasets, we found genes that are not picked up by differential gene expression analysis (DGEA), and are consequently unnoticed, yet visibly delineate phenotypes. This indicates that, in addition to DGEA, searching for genes that exhibit the discovered modalities could aid recovering genes that set phenotypes apart. For communities studying biomarkers and cellular phenotyping, the modalities present in bimodal RNA-seq data broaden the search space of genes, and furthermore, allow for incorporating cellular RNA processing into regulatory analyses.}, language = {en} }