@misc{ZhangWangHartmannetal., author = {Zhang, Wei and Wang, Han and Hartmann, Carsten and Weber, Marcus and Sch{\"u}tte, Christof}, title = {Applications of the cross-entropy method to importance sampling and optimal control of diffusions}, issn = {1438-0064}, doi = {10.1137/14096493X}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49720}, abstract = {We study the cross-entropy method for diffusions. One of the results is a versatile cross-entropy algorithm that can be used to design efficient importance sampling strategies for rare events or to solve optimal control problems. The approach is based on the minimization of a suitable cross-entropy functional, with a parametric family of exponentially tilted probability distributions. We illustrate the new algorithm with several numerical examples and discuss algorithmic issues and possible extensions of the method.}, language = {en} } @article{ZhangWangHartmannetal., author = {Zhang, Wei and Wang, Han and Hartmann, Carsten and Weber, Marcus and Sch{\"u}tte, Christof}, title = {Applications of the cross-entropy method to importance sampling and optimal control of diffusions}, series = {Siam Journal on Scientific Computing}, volume = {36}, journal = {Siam Journal on Scientific Computing}, number = {6}, doi = {10.1137/14096493X}, pages = {A2654 -- A2672}, language = {en} } @article{ZhangSchuette, author = {Zhang, Wei and Sch{\"u}tte, Christof}, title = {Reliable approximation of long relaxation timescales in molecular dynamics}, series = {Entropy}, volume = {19}, journal = {Entropy}, number = {7}, doi = {10.3390/e19070367}, language = {en} } @misc{ZhangSchuette, author = {Zhang, Wei and Sch{\"u}tte, Christof}, title = {Reliable approximation of long relaxation timescales in molecular dynamics}, issn = {1438-0064}, doi = {10.3390/e19070367}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63718}, abstract = {Many interesting rare events in molecular systems like ligand association, protein folding or con- formational changes happen on timescales that often are not accessible by direct numerical simulation. Therefore rare event approximation approaches like interface sampling, Markov state model building or advanced reaction coordinate based free energy estimation have attracted huge attention recently. In this article we analyze the reliability of such approaches: How precise is an estimate of long relaxation timescales of molecular systems resulting from various forms of rare event approximation methods? Our results give a theoretical answer to this question by relating it with the transfer operator approach to molecular dynamics. By doing so they also allow for understanding deep connections between the different approaches.}, language = {en} } @article{ZhangSchuette, author = {Zhang, Wei and Sch{\"u}tte, Christof}, title = {Understanding recent deep-learning techniques for identifying collective variables of molecular dynamics}, series = {Proceedings in Applied Mathematics and Mechanics}, volume = {23}, journal = {Proceedings in Applied Mathematics and Mechanics}, number = {4}, doi = {10.1002/pamm.202300189}, abstract = {High-dimensional metastable molecular dynamics (MD) can often be characterised by a few features of the system, that is, collective variables (CVs). Thanks to the rapid advance in the area of machine learning and deep learning, various deep learning-based CV identification techniques have been developed in recent years, allowing accurate modelling and efficient simulation of complex molecular systems. In this paper, we look at two different categories of deep learning-based approaches for finding CVs, either by computing leading eigenfunctions of transfer operator associated to the underlying dynamics, or by learning an autoencoder via minimisation of reconstruction error. We present a concise overview of the mathematics behind these two approaches and conduct a comparative numerical study of these two approaches on illustrative examples.}, language = {en} } @article{ZhangLiSchuette2021, author = {Zhang, Wei and Li, Tiejun and Sch{\"u}tte, Christof}, title = {Solving eigenvalue PDEs of metastable diffusion processes using artificial neural networks}, series = {Journal of Computational Physics}, volume = {465}, journal = {Journal of Computational Physics}, doi = {10.1016/j.jcp.2022.111377}, year = {2021}, abstract = {In this paper, we consider the eigenvalue PDE problem of the infinitesimal generators of metastable diffusion processes. We propose a numerical algorithm based on training artificial neural networks for solving the leading eigenvalues and eigenfunctions of such high-dimensional eigenvalue problem. The algorithm is useful in understanding the dynamical behaviors of metastable processes on large timescales. We demonstrate the capability of our algorithm on a high-dimensional model problem, and on the simple molecular system alanine dipeptide.}, language = {en} } @article{ZhangKlusConradetal., author = {Zhang, Wei and Klus, Stefan and Conrad, Tim and Sch{\"u}tte, Christof}, title = {Learning chemical reaction networks from trajectory data}, series = {SIAM Journal on Applied Dynamical Systems (SIADS)}, volume = {18}, journal = {SIAM Journal on Applied Dynamical Systems (SIADS)}, number = {4}, doi = {10.1137/19M1265880}, pages = {2000 -- 2046}, abstract = {We develop a data-driven method to learn chemical reaction networks from trajectory data. Modeling the reaction system as a continuous-time Markov chain and assuming the system is fully observed,our method learns the propensity functions of the system with predetermined basis functions by maximizing the likelihood function of the trajectory data under l^1 sparse regularization. We demonstrate our method with numerical examples using synthetic data and carry out an asymptotic analysis of the proposed learning procedure in the infinite-data limit.}, language = {en} } @misc{ZhangHartmannSchuette, author = {Zhang, Wei and Hartmann, Carsten and Sch{\"u}tte, Christof}, title = {Effective Dynamics Along Given Reaction Coordinates, and Reaction Rate Theory}, issn = {1438-0064}, doi = {10.1039/C6FD00147E}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-59706}, abstract = {In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: We first show that if we start with an ergodic diffusion processes whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Zwanzig-Mori, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the "equation-free" approach and the "heterogeneous multiscale method" can be seen as special cases of our approach.}, language = {en} } @article{ZhangHartmannSchuette, author = {Zhang, Wei and Hartmann, Carsten and Sch{\"u}tte, Christof}, title = {Effective dynamics along given reaction coordinates, and reaction rate theory}, series = {Faraday Discussions}, journal = {Faraday Discussions}, number = {195}, doi = {10.1039/C6FD00147E}, pages = {365 -- 394}, language = {en} } @article{WulkowTelgmannHungenbergetal., author = {Wulkow, Niklas and Telgmann, Regina and Hungenberg, Klaus-Dieter and Sch{\"u}tte, Christof and Wulkow, Michael}, title = {Deterministic and Stochastic Parameter Estimation for Polymer Reaction Kinetics I: Theory and Simple Examples}, series = {Macromolecular Theory and Simulations}, volume = {30}, journal = {Macromolecular Theory and Simulations}, doi = {10.1002/mats.202100017}, abstract = {Two different approaches to parameter estimation (PE) in the context of polymerization are introduced, refined, combined, and applied. The first is classical PE where one is interested in finding parameters which minimize the distance between the output of a chemical model and experimental data. The second is Bayesian PE allowing for quantifying parameter uncertainty caused by experimental measurement error and model imperfection. Based on detailed descriptions of motivation, theoretical background, and methodological aspects for both approaches, their relation are outlined. The main aim of this article is to show how the two approaches complement each other and can be used together to generate strong information gain regarding the model and its parameters. Both approaches and their interplay in application to polymerization reaction systems are illustrated. This is the first part in a two-article series on parameter estimation for polymer reaction kinetics with a focus on theory and methodology while in the second part a more complex example will be considered.}, language = {en} }