@misc{GoetschelWeiserMaierhoferetal., author = {G{\"o}tschel, Sebastian and Weiser, Martin and Maierhofer, Christiane and Richter, Regina}, title = {Data Enhancement for Active Thermography}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15243}, abstract = {Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise.}, language = {en} } @misc{GoetschelWeiserMaierhoferetal., author = {G{\"o}tschel, Sebastian and Weiser, Martin and Maierhofer, Christiane and Richter, Regina}, title = {Data Enhancement for Active Thermography}, series = {E-book Proceedings, 11th International Conference on Quantitative Infrared Thermography, Naples}, journal = {E-book Proceedings, 11th International Conference on Quantitative Infrared Thermography, Naples}, editor = {Cardone, Gennaro}, abstract = {Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise.}, language = {en} } @inproceedings{MuellerGoetschelWeiseretal., author = {M{\"u}ller, Jan and G{\"o}tschel, Sebastian and Weiser, Martin and Maierhofer, Christiane}, title = {Thermografie mit optimierter Anregung f{\"u}r die quantitative Untersuchung von Delaminationen in kohlenstofffaserverst{\"a}rkten Kunststoffen}, series = {NDT.net Proc. DGZfP 2017}, booktitle = {NDT.net Proc. DGZfP 2017}, abstract = {Da kohlenstofffaserverst{\"a}rkte Kunststoffe (CFK) in anspruchsvollen sicherheitsrelevanten Einsatzgebieten wie im Automobilbau und in der Luftfahrt eingesetzt werden, besteht ein zunehmender Bedarf an zerst{\"o}rungsfreien Pr{\"u}fmethoden. Ziel ist die Gew{\"a}hrleistung der Sicherheit und Zuverl{\"a}ssigkeit der eingesetzten Bauteile. Aktive Thermografieverfahren erm{\"o}glichen die effiziente Pr{\"u}fung großer Fl{\"a}chen mit hoher Aufl{\"o}sung in wenigen Arbeitsschritten. Ein wichtiges Teilgebiet der Pr{\"u}fungen ist die Ortung und Charakterisierung von Delaminationen, die sowohl bereits in der Fertigung als auch w{\"a}hrend der Nutzung eines Bauteils auftreten k{\"o}nnen, und dessen strukturelle Integrit{\"a}t schw{\"a}chen. ;In diesem Beitrag werden CFK-Strukturen mit k{\"u}nstlichen und nat{\"u}rlichen Delaminationen mit Hilfe unterschiedlich zeitlich modulierter Strahlungsquellen experimentell untersucht. Verwendet werden dabei Anregungen mit Blitzlampen und mit frequenzmodulierten Halogenlampen. Mittels Filterfunktionen im Zeit- und Frequenzbereich wird das Kontrast-zu-Rausch-Verh{\"a}ltnis (CNR) der detektierten Fehlstellen optimiert. Verglichen werden anschließend die Nachweisempfindlichkeit, das CNR und die Ortsaufl{\"o}sung der zu charakterisierenden Delaminationen f{\"u}r die unterschiedlichen Anregungs- und Auswertungstechniken. Erg{\"a}nzt werden die Experimente durch numerische Simulationen des dreidimensionalen W{\"a}rmetransportes.}, language = {de} } @inproceedings{GoetschelMaierhoferMuelleretal., author = {G{\"o}tschel, Sebastian and Maierhofer, Christiane and M{\"u}ller, Jan and Rothbart, Nick and Weiser, Martin}, title = {Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced Composites}, series = {Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016)}, booktitle = {Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016)}, language = {en} } @inproceedings{MuellerGoetschelMaierhoferetal., author = {M{\"u}ller, Jan and G{\"o}tschel, Sebastian and Maierhofer, Christiane and Weiser, Martin}, title = {Determining the material parameters for the reconstruction of defects in carbon fiber reinforced polymers from data measured by flash thermography}, series = {AIP Conference Proceedings}, volume = {1806}, booktitle = {AIP Conference Proceedings}, doi = {10.1063/1.4974671}, language = {en} } @misc{GoetschelMaierhoferMuelleretal., author = {G{\"o}tschel, Sebastian and Maierhofer, Christiane and M{\"u}ller, Jan P. and Rothbart, Nick and Weiser, Martin}, title = {Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced Composites}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-58374}, abstract = {Carbon-fiber reinforced composites are becoming more and more important in the production of light-weight structures, e.g., in the automotive and aerospace industry. Thermography is often used for non-destructive testing of these products, especially to detect delaminations between different layers of the composite. In this presentation, we aim at methods for defect reconstruction from thermographic measurements of such carbon-fiber reinforced composites. The reconstruction results shall not only allow to locate defects, but also give a quantitative characterization of the defect properties. We discuss the simulation of the measurement process using finite element methods, as well as the experimental validation on flat bottom holes. Especially in pulse thermography, thin boundary layers with steep temperature gradients occurring at the heated surface need to be resolved. Here we use the combination of a 1D analytical solution combined with numerical solution of the remaining defect equation. We use the simulations to identify material parameters from the measurements. Finally, fast heuristics for reconstructing defect geometries are applied to the acquired data, and compared for their accuracy and utility in detecting different defects like back surface defects or delaminations.}, language = {en} } @article{GoetschelWeiserMaierhoferetal., author = {G{\"o}tschel, Sebastian and Weiser, Martin and Maierhofer, Christiane and Richter, Regina and R{\"o}llig, Mathias}, title = {Fast Defect Shape Reconstruction Based on the Travel Time in Pulse Thermography}, series = {Nondestructive Testing of Materials and Structures}, volume = {6}, journal = {Nondestructive Testing of Materials and Structures}, pages = {83 -- 89}, language = {en} } @article{MohrAltenburgUlbrichtetal., author = {Mohr, Gunther and Altenburg, Simon J. and Ulbricht, Alexander and Heinrich, Philipp and Baum, Daniel and Maierhofer, Christiane and Hilgenberg, Kai}, title = {In-situ defect detection in laser powder bed fusion by using thermography and optical tomography - comparison to computed tomography}, series = {Metals}, volume = {10}, journal = {Metals}, number = {1}, doi = {10.3390/met10010103}, pages = {103}, language = {en} }